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1. INTRODUCTION

This final technical report presents a comprehensive summary of the research
accomplishments supported by Grant #AFOSR-89-0403 over the period July 1, 1989
to November 30, 1997.'?/The report reviews the objectives of the research in Section
1.1. The status of the research effort is reported in Section 1.2. Section 1.3 of Chapter
1 presents a comprehensive list of written publications resulting from this research
effort. Following this, Section 1.4 presents a recapitulation of the advanced degrees
awarded, a list of thesis titles, and a history of the professional personnel associated
with this grant. Seminars, presented papers, and advisory meetings with Air Force

and other DOD laboratories are reviewed in Section 1.5.

Chapter 2 presents some recent progress in the computational fluid dynamics
research associated with the study. Some additional work dealing with the modeling

of liquid-structure interaction is also described.

Appendix A describes the computer simulation of the test rig using a pendulum
analogy to model the sloshing liquid. Also included is a comparison of the results
with those obtained by another rigid body dynamic modeling package and from

experimental instrumentation of the test rig.

Appendix B discusses the study of the test rig stability which depends on such

physical parameters as the masses, inertias and linear dimensions. The work is based
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upon experimental results and computer simulations completed using the software

package SATELL developed at Iowa State University.

Appendices C, D, and E describe the finite element modeling of the test rig to
account for the elastic deformation of the spinning structure in addition to the rigid
body motion. A Lagrangian approach was used to develop the equations of motion
which include nonlinear relationships for the unknown rigid body motions and linear

terms for the relatively small elastic deformations of the members.

Appendix F outlines a sequential implicit-explicit numerical technique developed
to solve the system of nonlinear differential equations which describe the rigid body
and elastic motions of the structure. The technique employs a Newmark algorithm

which is often used in conjunction with finite element methods.

Appendix G describes the basic concepts of the primitive variable coupled strongly
implicit solution procedure that was eventually employed in a revised form in the
three-dimensional surface fitting sloshing code, SLOSH3D. The version described in
Appendix G is applicable to all flow regimes. For use in the simulation of sloshing
flows, the scheme of Appendix G was eventually extended to three dimensions and

specialized to incompressible flow.

Appendix H contains the first numerical solutions obtained for three-dimensional
liquid sloshing using the surface fitting scheme developed under the present grant.
The paper also describes the mathematical modeling required to correctly account
for the general rotating-nutating motion of the container. Results for five different

free surface calculations are presented.
Appendix I presents both experimental and computational results for the slosh-

ing inside a partially filled spherical container undergoing an orbital rotating motion.
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Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a
gradual spin-up from rest are compared with experimental data obtained using a ro-
tating test rig fitted with two partially filled spherical tanks. The numerical solutions

were found to compare favorably with the experimental data.

1.1 Research Objectives

This project has involved the study of the dynamics of spin-stabilized satellites
carrying sloshing liquid stores. It represents a continuation of work completed during
an initial three year funding period from the Air Force Office of Scientific Research.
During the previous three year period, a test rig capable of spinning an assembly
with two liquid-filled spherical tanks was designed, built and instrumented. Initial
experimental runs were completed for a limited number of physical parameter values.
In a parallel effort a computer simulation model was developed which treated the
sloshing liquid as a two degree-of-freedom pendulum. Numerical results showed good
agreement with the empirical data. However, in an attempt to produce an even better
mathematical model, an effort was initiated to replace the pendulum analogy by a
more exact characterization based upon computational fluid dynamics (CFD). The
research conducted during the current three year period has continued the spacecraft
dynamic studies started during the initial phase. The objectives of this continuation

grant have included:

e To define regions of stability for the existing test rig and to evaluate the effect
on stability of such design parameters as tank fill ratios, liquid viscosity, and

moments and products of inertia.




e To modify and expand the mathematical model of the satellite simulator to

include a finite element analysis of the precessing and deforming structure.

¢ To identify the fluid reaction on its container (tank) by the dynamic modeling
of the sloshing free surface liquid. To fully develop the computational fluid
dynamic model of this free surface liquid with its time-varying reaction on the

spherical tank.

Development of such a model was undertaken to provide a state-of-the-art repre-
sentation of the test rig to accurately predict the motion of the system and its various
elements and to provide insight into the interactive nature of the structural and lig-
uid components. Such a computational model should provide a valuable tool for the
study of parameters and physical phenomena governing the stability and motion of

complex space systems.

1.2 Status of Research

Work under the previous AFOSR grant has provided a solid foundation for the
current effort. During the previous phase of the research, a test rig was built and
instrumented, and a software package (SATELL) was developed to the simulate the
rigid body motion of the test assembly. A pendulum analogy was used to model the
sloshing liquid in that early program. Several numerical simulations were carried out
and results were compared with those from another rigid body dynamics package
called CAMS. Simulation output was also compared with experimental data for a
few select cases (see Appendix A).

Experimental work and numerical simulations using SATELL have continued
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during the current research effort. Attention has been focused on stability analysis
of the test rig’s dynamic motion. Various cases have been studied to determine
the influence of physical parameters such as masses, inertias and linear dimensions.
Results have verified the conclusion that stable motion for such a system with energy
dissipation due to flexible members and/or a sloshing viscous liquid requires spin
about the axis of maximum principal moment of inertia. However, certain instances
were discovered when that requirement was not sufficient to guarantee stable motion.

This was found to be true for both experimental and numerical procedures (see

Appendix B).

While the rigid body model provided results that were in general agreement
with the experimental data, a more exact model to account for the elastic and rigid
body motions was needed to better predict the motion of the assembly. A finite
element approach was utilized along with a Lagrangian formulation to develop the
equations of motion. Both the rigid body degrees of freedom and the elastic degrees
of freedom were considered as unknown generalized coordinates of the entire system
in order to accurately reflect the nature of mutually coupled rigid body and elastic
motions. Nonlinear coupling terms between the rigid body and elastic motions were

fully derived and explicitly expressed in matrix form (see Appendices C, D and E).

The equations developed for the overall rigid plus elastic motion described above
contain rigid body motion coordinates that appear in a highly nonlinear fashion along
with small elastic motion coordinates that can be handled adequately by linearized
relationships. Furthermore, the overall system of equations involves time-varying
coefficient matrices which greatly complicate the solution process. A sequential,

implicit-explicit integration method is utilized to handle these difficulties. In this
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technique, the equation system is first mapped to a subsystem in which the specified
generalized coordinates are eliminated. The subsystem is then partitioned into two
sets of coupled equations. The set describing elastic motion, which is linear with
respect to the elastic generalized coordinates is integrated implicitly. The set gov-
erning the rigid body motion, which contains the highly nonlinear coupling terms, is
integrated explicitly with back substitution of the elastic kinematic properties deter-
mined from the first set of equations. A Newmark algorithm is used to integrate the

second order systems of equations directly (see Appendix F).

Two numerical strategies for computing liquid sloshing flows have been pursued
under this grant. Both provide a numerical solution to the full three-dimensional
unsteady incompressible Navier-Stokes equations which govern the liquid motion.
Both schemes utilize primitive variables and an artificial compressibility approach.
The schemes differ primarily in the way in which the free surface and the grid are

treated.

The most widely tested and “advanced” scheme utilizes “surface fitting” whereby
the free surface becomes one of the boundaries of the computational domain. In this
approach the grid points are moved after each time step. The computer code based
on this approach, SLOSH3D, utilizes a coupled strongly implicit procedure (SIP) to
solve the resulting algebraic equations. The basic concept of the primitive variable
coupled SIP scheme is discussed in a paper by Chen and Pletcher (see Appendix G).
Results from the SLOSH3D code are described in Appendix H and Appendix I.

The second scheme utilizes “surface capturing.” The main motivation for pur-
suing this strategy is that surface capturing does not require a moving, surface con-

forming grid. Such surface conforming grids become difficult to generate as the free
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surface topologies become more complex. In addition, the establishment of a new
grid at each time step does require computational resources. The surface capturing
permits the calculation of a more general class of flow than with surface fitting. The
surface fitting approach allows computation of only the liquid in a container whereas
with surface capturing, the flow in both phases, liquid and gas (or vapor) can be re-
solved. In some applications, information on both phases is desired. This formulation
and the results obtained to date are described in Section 2.2.

Calculations of fluid-structure interactions have been successfully carried out.
Two codes developed under this grant, STRUCTURE, which calculates the flexible
system dynamics, and SLOSH3D, which computes the sloshing motion of the fluid
contained in the tank, have been joined into a single unit that enables the transfer
of information between the two component modules at each time step of the simula-
tion. Such interactive calculations permit much more realistic predictions of system
behavior and are likely to become widely used in design procedures in the future.

More details of the formulation and the preliminary results are reported in Section

2.3.

1.3 Publications

Listed below are technical reports previously submitted to the Air Force Office of

Scientific Research:

Baumgarten, J.R., Flugrad, D.R., and Pletcher, R.H. (1990). “Investi-
gation of Liquid Sloshing in Spin-Stabilized Satellites,” Technical Report
No. ISU-ERI-Ames 90410, lowa State University, Ames, [A.

Baumgarten, J.R., Flugrad, D.R., and Pletcher, R.H. (1991). “Investi-
gation of Liquid Sloshing in Spin-Stabilized Satellites,” Technical Report
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No. ISU-ERI-Ames 92400, Iowa State University, Ames, IA.

Listed below are technical publications resulting from this work during the current

grant:

Chen, K.-H., Kelecy, F.J., and Pletcher, R.H. (1992). “A Numerical and
Experimental Study of Three-Dimensional Liquid Sloshing in a Rotating
Spherical Container,” AIAA-92-0829, presented at the 30th Aerospace -
Sciences Meeting, Reno, NV.

Chen, K.-H. and Pletcher, R.H. (1991). “A Primitive Variable, Strongly
Implicit Calculation Procedure for Viscous Flows at all Speeds,” ATAA
Journal, Vol. 29, No. 8: 1241-1249.

Chen, K.-H. and Pletcher, R.H. (1991). “A Primitive Variable, Strongly
Implicit Calculation Procedure,” Technical Report Grant No. AFOSR-
89-0403, Report No. ISU-ERI-Ames 91401.

Flugrad, D.R. and Obermaier, L.A. (1992). “Computer Simulation of a
Test-Rig to Model Liquid Sloshing in Spin-Stabilized Satellites,” ASMFE

Journal of Dynamic Systems, Measurements, and Control, Vol. 114, No.
4: 689-698.

Kassinos, A.C. and Prusa, J.M. (1990). “A Numerical Model for 3D Vis-
cous Sloshing in Moving Containers,” Proceedings of the ASME Winter

Annual Meeting, Symposium on Recent Advances and Applications in
CFD: pp. 75-86.

Listed below are the papers which have been accepted for publication:

Chen, K.-H. and Pletcher, R.H. (in press). “Simulation of Three-Dimensional

Liquid Sloshing Flows Using a Strongly Implicit Calculation Procedure,”
AIAA Journal

Hill, D.E. and Baumgarten, J.R. (in press). “Control of Spin-Stabilized
Spacecraft with Sloshing Fluid Stores,” ASME Journal of Dynamic Sys-
tems, Measurements, and Control.




Xu, J., and Baumgarten, J.R. (1991). “A Finite Element/Lagrangian For-
mulation of Dynamic Motion Prediction for a Flexible Satellite Simulator
with Both Rigid and Elastic Bodies,” Proceedings of the 2nd National Ap-
plied Mechanisms and Robotics Conference, Cincinnati, OH, November 3
- 6, 91AMR-VIIB-5: 1 - 8.

Xu, J., and Baumgarten, J.R. (1992). “Modeling of Flexible Multibody
Articulated Structures with Mutually Coupled Motions. Part I: General
Theory,” ASME Flezible Mechanisms, Dynamics, and Analysis, DE-Vol.
47: 411 - 419.

Xu, J., and Baumgarten, J.R. (1992). “Modeling of Flexible Multibody
Articulated Structures with Mutually Coupled Motions. Part II: Applica-
tion and Results,” ASME Flezible Mechanisms, Dynamics, and Analysts,
DE-Vol. 4T: 421 - 429.

Xu, J., and Baumgarten, J.R. (1992). “A Sequential Implicit-Explicit In-
tegration Method in Solving Nonlinear Differential Equations from Flexi-
ble System Modeling,” ASME Flexible Mechanisms, Dynamics, and Anal-
ysis, DE-Vol. 47: 561 - 566.

Listed below are the papers which are currently under review for publication in the

technical literature:

Chen, K.-H., Kelecy, F.J., and Pletcher, R.H. (1992). “A Numerical and
Experimental Study of Three-Dimensional Liquid Sloshing in a Rotating
Spherical Container,” under review by AIAA Journal Thermophysics and
Heat Transfer.

Schick, T.E. and Flugrad, D.R. (1992). “Motion Study of A Spin-Stabilized
Satellite Test Rig,” under review by ATAA Journal of Guidance, Control,
and Dynamics.




1.4 List of Research Personnel, Thesis Titles, and Degrees Awarded

The investigation of rigid body and flexural structure response of the satellite
simulator is directed by J.R. Baumgarten and D.R. Flugrad.

J. R. Baumgarten served as principal investigator for the project until his re-
tirement in June 1992. D. R. Flugrad and R. H. Pletcher have served as co-principal
investigators and have continued to share that responsibility following Baumgarten’s
retirement.

J. R. Baumgarten supervised the work of Jiechi Xu, a Ph.D. student who has
developed software to model the elastic and dynamic motions of the satellite test
rig. This is a particularly difficult problem because of the unspecified rigid body mo-
tions of the assembly which are best characterized by nonlinear differential equations
coupled with small elastic deformations of the structure which can adequately be
described by linear relationships. Flexible components of the structure were modeled
by finite element beam members and a sequential implicit-explicit integration tech-
nique was developed to solve the combined system of differential equations. He also
worked with others on the project in developing a numerical procedure for simulating
the interaction between the spinning, elastic structure and the sloshing liquid. Xu is

expected to graduate in May 1993. His dissertation is entitled:

Xu, J., (1993). “Dynamic Modeling of Multibody Flexible Structures,”
Ph.D. Thesis, lowa State University, Ames, IA.

Troy Schick studied the dynamic stability of the satellite test rig. Under the
direction of D. R. Flugrad he extended the work of Lisa Obermaier, a former M.S.

student who worked on the project during the previous three year grant. Obermaier
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developed a computer program named SATELL to simulate the rigid body motion of
the test rig using a pendulum analogy to model the sloshing liquid. Schick used that
program to run a number of cases to study motion stability of the system based on
physical parameters such as masses, inertias and linear dimensions. He was also able
to verify expected results experimentally: He graduated in May 1991 and is currently

employed by Olin Corporation in Indianapolis, IN. His thesis title is:

Schick, T. E. (1991). “Motion Study of a Spin-Stabilized Satellite Test
Rig,” M.S. Thesis, Iowa State University, Ames, IA.

Tom Thompson joined the project as a Ph.D. student in 1992. Under D. R.
Flugrad’s supervision, he has assisted in the experimental work associated with the
effort to combine the rigid body/elastic model and the CFD model to study the
liquid/structure interaction. He expects to graduate in 1994.

The computational fluid dynamics effort was directed by R. H. Pletcher. He was
assisted by Ph.D. students Kuo-Huey Chen, Franklyn Kelecy, and Babu Sethuraman,

Mr. Chen graduated with the Ph.D. in December, 1990. His dissertation was entitled

Chen, K-H. (1990). “A Primitive Variable, Strongly Implicit Calcula-
tion Procedure for Two and Three-Dimensional Unsteady Viscous Flows:
Applications to Compressible and Incompressible Flows Including Flows
with Free Surfaces,” Ph.D. Thesis, lowa State University, Ames, IA.

Mr. Kelecy expects to complete degree requirements in 1993, and Mr. Sethuraman,

in 1994.

1.5 Seminars, Presentations, and Laboratory Visits

J. R. Baumgarten visited Dr. Spencer Wu at AFOSR Bolling AFB in March

1990. The visit coordinated the work of various technical personnel with the mission
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of the grant. Baumgarten attended the 1990 Supercomputing Institute at AFSC Kirt-
land AFB, 21-25 May 1990. He conducted the seminar titled “Tumbling Satellites”
at Afdeling Werktuigkunde, K. U. Leuven, Leuven, Belgium on Jan. 15, 1990.

R. H. Pletcher held a seminar titled “Numerical Simulation of Unsteady Viscous
Flows” on Jan. 16, 1990 at NASA Lewis Research Center in which he covered the
early results of Mr. Chen’s calculations. His host was Dr. Meng Liou, Branch Chief,

Computational Fluid Mechanics.

Kuo-Huey Chen held a seminar titled “A Primitive Variable Strongly Implicit
Calculation Procedure for Two and Three Dimensional Flows ” on June 4, 1990 at

CFD Research Corporation, Huntsville Alabama.

R.H. Pletcher held the seminar entitled, “Numerical Simulation of Unsteady
Viscous Flows” at the University of Alabama, Huntsville, Feb. 15, 1991. Results of
liquid sloshing simulations were featured. The seminar was part of the 1991 Propul-
sion/CFD/Mechanical Engineering Series attended by faculty, students, industrial
representatives, and personnel from NASA Marshall Labs. Pletcher visited NASA
Lewis Research Center on three occasions to discuss future research in liquid sloshing.
He visited NASA Ames Research Center in March 1991 to collaborate on research in

turbulence modeling.

D.R. Flugrad and J.R. Baumgarten visited the Federal Microelectronics and
Instrumentation Laboratory, Limrick, Ireland in March while participating in the
seminar FAIM 91. Drs. Flugrad and Baumgarten both presented lectures on path
planning for open chain multiple body mechanisms.

All three principal investigators participated in the 1991 Air Force Office of

Scientific Research Contractors Meeting on Structural Dynamics held in Dayton,
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Ohio in October of 1991. A presentation of progress and plans was made as a part
of the scheduled program.

During July, 1991, R. H. Pletcher presented a seminar on “Recent Results in the
Numerical Simulation of Unsteady Viscous Flows” at the NASA Lewis Research Cen-
ter. In September, 1991, he presented an invited lecture on “Numerical Simulation
of Unsteady Viscous Flows” at the Fourth Nobeyama Workshop on Supercomput-
ing and Experiments in Fluid Dynamics, Nobeyama, Japan. In November, 1991,
Pletcher presented a seminar at Iowa State University “On the Numerical Solution
of the Compressible Navier-Stokes Equations at Very Low Mach Numbers.”

In January, 1992, Dr. K.-H. Chen, a former graduate student participant in the
present grant, presented a paper describing some of our most recent results, “A Nu-
merical and Experimental Study of Three-Dimensional Liquid Sloshing in a Rotating
Spherical Container” at the 1992 Aerospace Sciences meeting in Reno, Nevada.

In November of 1991, Mr. Xu presented a paper entitled “A Finite Element/Lagrangian
Formulation of Dynamic Motion Prediction for a Flexible Satellite Simulator with
Both Rigid and Elastic Bodies” at the 2nd National Applied Mechanisms and Robotics

Conference in Cincinnati, Ohio.
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2. RESEARCH IN PROGRESS

The following sections summarize some of the more recent results obtained in the
present research program. The first section discusses the progress made in the liquid
sloshing calculations using the surface fitting approach. The next section describes
recent advances in the surface capturing approach along with some results for two
test cases. The last section presents some experimental results obtained from the ISU
satellite test rig for the case of a simple orbital spin-up. The experimental data are

comp.red with numerical solutions obtained from a fluid-structure interaction code.

2.1 Recent Progress in the Surface Fitting Approach

Most of the effort in the surface fitting approach has been directed towards
eliminating some of the problems with the current code and enhancing its overall
capability. The two areas which received the most attention were the handling of
the free surface motion and speeding up the code execution particularly through

vectorization. Progress in these two areas will be discussed below.

2.1.1 Free-surface motion

A key feature of the free surface fitting approach is that the location and shape

of the free surface at each time step is not known beforehand and thus has to be
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evaluated as part of the solution. The free-surface location is obtained by solving the
equation that states the free-surface kinematic (FSK) condition which is based on
the principle that ‘particles on the free surface remain on the free surface’.

Knowing the flow solution (the velocity components u,v, and w in the three
directions and the density p) at all the grid points at a particular point in time, the
location of the free surface after one time step must be evaluated. This is done by
solving the free surface kinematic equation, which is of the form:

oF oF ar

-5—t-=015;‘;+u25;;+5 (2.1)

where F = F(x,,3,t) is the free-surface function that describes the location/shape
of the free-surface. In this equation, coeflicients C;, C3, and the source term S are
functions of the flow field and certain other grid related parameters. As we are trying
to estimate F' at time step ‘n + 1°, the flow solution as well as the grid are known
only at the current time level, n. Hence the coeflicients, C;, C; and the source term
S are also known only at the time level n. In trying to solve for F™*! (superscript
denotes time level), these coeflicients and the source term are ‘lagged’ to the previous

time level. In short, it can be said that the equation solved was equivalent to

QF|™4 J[oF™ JoFH
G| =erloE] " rer|E] 4 22)

In the past, this equation was solved just once to get F"*!. The approach has
been modified in the following way: The above procedure of lagging the unknown
coefficients is used once to get F™*!. Using the new free-surface information and
the subsequently converged flow solution, the coefficients and the source term are

evaluated at the new time level n + 1. Using the new information, the following
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equation was solved to refine Fn+!:

[BF] n+i Fn4l _ pn

at At
n 1n n n+1
_ el ] e 3]
2
n 1n n n+1
[C)) gf‘; +[Co*! 793",% + [S]" + [S]*+!
2 2

.(2.3)

The system of algebraic equations resulting from approximating the spatial
derivatives by appropriate (one-sided or central, depending on the situation) fi-
nite difference forms, was solved using a two-dimensional strongly implicit procedure
(2DSIP). Terms that did not fall within the 5 point 2DSIP molecule (including terms
from previous time level) were moved to the right hand side in the solution algorithm.

This method, which is more like the trapezoidal or Crank-Nicolson time differ-
encing, was expected to give better results as the scheme is closer to being second
order accurate in time as compared to the first order accuracy of the old scheme. It
should be noted that the above procedure can be repeated (using the latest values
of Cy, C3, and S for time level n + 1) until the changes in F are small at each time
step.

As the location of the free surface determines the amount of liquid in the con-
tainer, the more accurate scheme is likely to better conserve mass globally. Numerical
calculations to date tend to support this idea. For one spin-up calculation, the error
between the initial volume of liquid and the final volume was about 10 % when the

free surface calculations were done only once per time step. It was found that this
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error could be reduced to approximately 4 % when the free surface calculations were
done twice per time step, and to sightly below 2 % when the calculations were done

four times per time step.

2.1.2 Contact line boundary conditions

The boundary condition used along the line of contact between the free-surface
and the solid container wall has been changed to avoid some problems associated with
computing higher Reynolds number flows. The grid in the interior of the liquid is
generated algebraically so that the grid lines conform to the shape of the free-surface.
In other words, the free-surface shape is one of the main factors that determines the
placement of interior grid lines.

The free-surface kinematic equation is solved in the interior of the free surface
(i.e. the entire free-surface excluding the line of contact between the free-surface and
the container wall) and the position of the contact line is estimated through separate
procedures. The method that is currently being used is to estimate the contact line
such that the condition g—g = 0 is satisfied. In this condition, # denotes a direction
normal to the wall of the container. This method ensures that the free-surface is
locally normal to the solid wall along the contact line. This is an attempt to avoid

grid cells with very sharp corners near the container wall and associated numerical
instabilities.

The improved method of solving the free surface kinematic (FSK) equation along
with the revised boundary condition has shown much promise. In earlier attempts
at trying to solve some severe spin-up cases, the code displayed a tendency to slow

down in convergence as time marching continued, and eventually blow up. This
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problem was eliminated by using the new approach described above. One spin-up case
corresponding to a Reynolds number of 250 has been successfully computed. Further

numerical experiments are underway to study the usefulness of this procedure.

2.1.3 Code refinement efforts

Earlier attempts at using the SLOSH3D code to simulate spin-ups of spherical
tanks encountered some difficulties beyond a certain range of Reynolds numbers
(based on tank radius and linear velocity of tank center). For a particular case
(Re = 180), the calculations suddenly began to diverge, and eventually blew up.
Another problem associated with such calculations was a large difference (more than
10%) between the initial volume of the liquid in the tank and the calculated volume
after sufficiently large number of time steps.

It was felt that the use of a finer grid might eliminate such problems. A major
difficulty associated with grid refinement was that the time taken for the computa-
tions began to grow out of control. At that stage, it was realized that enhancing
the execution speed of the code was vital to the simulation of finer grid and high
Reynolds number cases.

Two different approaches were taken to make the code execution faster. The
first one is a direct consequence of the fact that the code was developed to suit
the capability of the workstations on which the code was primarily expected to run.
These machines had restrictions on the memory size that prohibited the use of finer
grids. So, it was decided to use larger memory vector machines like the Cray Y-MP

with a code that was different in the following ways:

1. Removing repetitive calculations:
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As pointed out earlier, the initial code development was tailored to suit the
capability of workstations available on campus which had very limited mem-
ory. Hence, as far as possible, the code was based on repetitive generation of
the same sets of numbers rather than generating them just once and storing
them in large arrays. The enhanced memory on large computers like the Y-MP,
permitted switching to larger storage and fewer calculations. This eventually
resulted in faster code execution. In fact, a significant speed-up, by a factor
of as many as ten times could be achieved by modifying the code along these

lines.

. Vectorization:

The SLOSH3D code uses a three-dimensional coupled strongly implicit pro-
cedure (CSIP3D) to solve the system of algebraic equations which results from
the finite difference discretization. This CSIP3D routine is a critical and time
consuming part of the overall calculations. It was realized that this part of the
calculations was responsible for a large fraction of the computer execution time
due to high data dependence of the implicit procedure and the consequent time

consuming scalar execution loops.

The algorithm was vectorized along surfaces of constant index sums (i +j+k =
constant). In other words, the three-dimensional calculations were converted
to two dimensions: surfaces containing points whose indices add to the same
number. Surfaces were identified by their index sums (ranging from i +j + k =

imin + jmin + kmin to i + j + k = imaz + jmax + kmaz) and each of these
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surfaces contained all the points (one or more) that satisfied the property that
their indices add up to a certain constant. Vectorizing the calculations along
these lines was possible because of the fact that the calculations (in the CSIP3D
procedure) for points lying on any one surface was not dependent on any param-
eters related to any other point on the same surface. Hence, the calculations
for all such points lying on the same surface could be done simultaneously;
this results in more vector operations and consequent higher rate of execution.
The overall execution speed of the code was increased approximately to about

sixteen times the original speed.

2.2 Recent Progress in the Surface Capturing Approach

This section highlights progress made in the development of the surface cap-
turing approach for modeling sloshing flows in moving containers. As discussed in
previous reports [4] (5], the primary motivation for pursuing this strategy is that sur-
face capturing does not require a moving, surface-conforming grid, and hence is free
of the grid generation problems associated with the surface fitting approach. More-
over, multiple free surfaces and complex surface interactions can be handled without
any special treatment.

Initial work on the free surface capturing approach was begun as part of the
ongoing satellite propellant sloshing research at lowa State University. The evolution
of the present surface capturing methodology has been documented in the previous
annual reports [4] [5]. Many ideas have been tested during the course of the research,
with the goal of obtaining a reliable, robust, and accurate computer code. The most

significant developments will be discussed in the sections below, along with some
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results for two validation test cases

2.2.1 Formulation of the governing equations

Consider a container partially filled with a liquid, the remaining regions being
occupied by a gas. If it is assumed that both the liquid and gas behave as isothermal,
incompressible fluids, the equations which govern the fluid motion within a discrete

control volume (? intersected by the free surface (Fig. 2.1) can be written as follows:

-;—t/pdﬂ+fp‘7-d§=0 (2.4)
0 S
%/,;Vda + §pVV-d5 = [pBd+ §T-d5 }{aNdC (2.5)
Q ) Q S
$7V-d5=0 (2.6)
S

where p is the fluid density, V is the velocity vector, T is the stress tensor, B is the
body force acceleration vector, and o is the surface tension.

Equations 2.4, 2.5, and 2.6 represent, respectively, the conservation of mass, the
conservation of momentum, and an incompressibility constraint. Note that the con-
servation of mass and incompressibility constraint equations become identical away
from the interface since the density of each fluid is considered constant.

While the foregoing equations appear unusual at first glance (due to the presence
of an equation for density), they do in fact constitute a solvable set of equations given
appropriate initial and boundary conditions. Detailed discussions of the mathemat-

ical properties of solutions to differential analogs of these equations can be found in
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recent works by Simon [12] and Antontsev et. al [2].

It should be noted that the density is considered here to be a discontinuous
function of space (the discontinuity occurring at the free surface). This comment
also applies to other fluid properties such as the viscosity. As a result, the solution
of Eq. (2.4) provides a means of locating the free surface through knowledge of the
density field.

The inclusion of a surface tension force term into the conservation of momentum
equation is valid only for control volumes containing the free surface. Away from the
free surface (in the single phase regions) this term will vanish. Therefore, in order
for surface tension to be included in the numerical formulation described below, it is
necessary to identify the location of the free surface within the computational domain.
However, for most of the sloshing problems of interest in the present research, surface
tension effects should be small (thus allowing the surface tension force to be neglected

from the formulation).

2.2.2 Numerical methods

The numerical algorithms developed to date have employed the finite volume
method [1]. In the finite volume method, the computational domain is divided up into
a system of non-overlapping control volumes. The dependent variables are assigned
values at node points located at the centroids of these control volumes. Numerical
approximations of the fluid conservation laws (e.g. Eqs. 2.4 - 2.6) may then be
derived for each control volume.

In order to couple the incompressibility constraint with the conservation of mass

and momentum equations, the pseudo-compressibility method of Chorin is employed

23




interface

S

Figure 2.1: Control volume within a two-fluid system.
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[6]. The pseudo-compressibility approach adds a fictitious pressure derivative term

to Eq. (2.6), yielding

d L
Zﬂ/PdQ+ﬂ_jV-dS_0 (2.7)

where [ is a constant parameter, and 7 is the pseudo-time. It should be noted that
the pseudo-time, which has no physical meaning, is essentially an iteration parameter

for which

. of
rlLrg—T =0 (2.8)
}Lr{.lof(r) = f(t + At) (2.9)

where f is any flow field variable. Equations (2.8) and (2.9) suggest that the solution
at any given future time level ¢t + At corresponds to a steady state solution in pseudo
time. For consistency in the formulation, pseudo-time terms are also added to the
other equations. This practice does not affect the solution since all pseudo-time
derivatives are required to go to zero at steady state (in pseudo-time).

The discretized equations form a coupled system containing five (in three di-
mensions) unknowns at each point. The current formulation solves this system using
an LU-factored implicit algorithm similar to that of Yoon et. al. [14]. Transient
calculations are carried out using a constant physical time step in conjunction with
subiteration. The subiterations are needed in order to drive the pseudo-time deriva-

tives to zero, and hence converge the solution at the next physical time level.
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2.2.3 Test case results

Results for two test cases are presented in this section. The first test case is
the “broken dam” problem [13], which was chosen, primarily due to its use by other
authors as a validation case [7] [9] [11], the availability of experimental data [10], and
the complex behavior of the flow field and free surface. In the broken dam problem
(Fig. 2.2), a rectangular liquid column is initially held up by a thin partition (the
dam). At timet = 0%, the partition is removed, thereby allowing the liquid to collapse
under the influenc of gravity. Of interest for comparison with the experimental data
from the literat..e are the positions of the free surface at the bottom wall (the surge
front) and back wall as functions of time.

The case presented here employed a square initial liquid profile of length a placed
within a container 5a units long by 1.25a units high by a units wide. The liquid was
assumed to be water and the gas air, both at standard conditions.

In previous calculations of this test case, a three dimensional grid was used.
However, as the major flowfield features are principally two dimensional, the decision
was made to employ a two dimensional version of the original three dimensional code.
This permitted a faster turn around time in the individual calculations (which tended
to be quite lengthy due to the nature of the unsteady flowfield).

In order to examine the effect of grid refinement, numerical solutions were com-
puted using three grid sizes of 80 x 20, 120 x 30, 160 x 40 control volumes. A constant
time step was prescribed for each calculation as follows (time units are dimension-
less): 0.01 for the 80 x 20 grid, 0.0067 for the 120 x 30 grid, and 0.005 for the 160 x 40
grid.

Some selected results derived from the computed solutions are presented in Figs.
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2.3 - 2.6. Figure 2.3 shows the position of the density interface (free surface) at various
times during the transient for the 120 x 30 grid solution. The corresponding velocity
fields are shown in Fig. 2.4. Notice the formation of a large vortex in the vicinity of
the free surface due to the shear induced by the motion of the liquid relative to the
gas. The free surface profiles are quite similar to those shown in photographs from
experiments in Ref. [10].

A more quantitative comparison of the numerical solution with the experimental
data is given in Figs. 2.5 and 2.6. Here the position of the free surface along the
bottom and back walls of the container are plotted versus non-dimensional time. The
agreement between the numerical solution and the experimental data is good con-
sidering the uncertainties inherent in the experimental data and the approximations
used in the numerical solution.

The second test which was recently attempted is depicted in Fig. 2.7. Here, a
two-dimensional, rectangular tank half-filled with water is subjected to a prescribed

horizontal, oscillating acceleration. This acceleration is of the form

az(t) = Agsin(wt) (2.10)

where A = 0.01 is an amplitude parameter, g is the acceleration due to gravity, and
w = 2rf = 5.592 Hz is the oscillation frequency. The motion of the tank gives rise
to a periodic sloshing motion of the water. This case has been studied numerically
by Huerta and Lin [8].

The calculations were performed on a 48 x 64 control volume grid. The time
step was set to 0.025 (dimensionless time units), and the calculations carried out for

400 time steps.
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Selected plots of the density interface position are presented in Fig. 2.8. The
position of the free surface at the front and back walls of the tank is plotted as
a function of time in Fig. 2.9. The periodic motion of the water waves is clearly
indicated in this figure. Notice that the free surface motions at front and back walls

appear to be out of phase with one another.

2.2.4 Concluding remarks

The encouraging results obtained thus far have spurred additional efforts to refine
the methodology. Current work is focusing on enhancing the stability, accuracy, and
robustness of the method. Application of the method to other test cases and to the

satellite propellant sloshing problem will follow.

2.3 Progress in Fluid-Structure Intcraction

Experimental measurements of fluid and structural displacement for the case of
a simple orbital spin-up from rest were recently obtained on the satellite test rig at
Jowa State University. The purpose of these experiments was to provide data for ver-
ifying the accuracy of the fluid-structure interaction computer code (STRUCTURE-

SLOSH3D). A detailed summary of this work is presented in the sections below.

2.3.1 Equipment

The test rig is shown in Figure 2.10. Its upper body, which emulates an orbit-
ing satellite, is mounted on a universal joint driven by a 1/4-horsepower DC motor
through a gear train. In the spin-up tests, a collar was positioned so that the up-

per body could only rotate about a vertical axis. The two 6-inch-diameter spherical
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Figure 2.2: Schematic of the broken dam problem.
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Figure 2.3: Density interface for the broken dam problem:selected times.
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Figure 2.5: Surge front position versus dimensionless time for the broken dam prob-
lem.
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Figure 2.6: Back wall free surface position versus dimensionless time for the broken
dam problem.
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tanks (50% filled with glycerine) were mounted using segments of 5/16-inch threaded
rod extending downward from a horizontal crossbar attached to the upper body axis.
The position of the center of the tanks under stationary and weightless conditions

would be 10 inches from the vertical spin axis and 14 inches below the crossbar.

In order to allow a useful validation of the computer simulation code, the fol-
lowing quantities had to be measured for the spin-up test: angular velocity of the
upper body, displacement of the tank position due to bending of the threaded rods,
and fluid displacement in the tanks. Transducers mounted on the rig itself provided
signals (through slip rings when necessary) to the data acquisition personal computer

as described below. A list of specifications is given in Table 2.1.

A tachometer connected to the drive train of the rig provided a voltage nearly
proportional to the speed of the rig. See the Calibration section for details on the

calibration curve.

Strain gages were mounted on the inboard and outboard sides of both of the
threaded rods on which one of the tanks was mounted. These four strain gages
comprised a Wheatstone bridge which generated a signal proportional to the dis-
placement of the center of the tank from the axis of the upper body. A conditioning
circuit mounted on the upper body amplified the signal before it was sent through
the slip rings to the terminal block on the data acquisition computer. This circuit is

shown in Figure 2.3.1.

Three photopotentiometers were mounted on the tank in order to sense the fluid
displacement of the free surface along vertical sections of the tank. Photopoten-
tiometer 1, 2, and 3 measured fluid displacement along the “inboard,” “outboard,”

and “lag” axis, respectively. These sensors were positioned so that their single-valued
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Table 2.1:

Description of Equipment

Component Maker Description
Data Acquisiton Computer IBM PS/2 Model 50
Data Acquisition Board National Instruments MC-MIO15-9
Power Supply Raytheon QSA10-14
0-10VDC, 0.6A
Photopotentiometers
Light Bulbs SK46
Strain Gages SR4
Instrumentation Analog Devices ADS24BD 8913
Amplifier
DC Motor General Electric Model SBPBS6HAA100
90VDC, 1/4 hp
1725 RPM

39




REFERENCE
OUTPUT
Circuit Board [1[2]3]als]e]7 TsToT0]
20 Meg 500 Ohm
Balancing Pot Gain

s Lz le] b1 lod 3] L0 Lu

1 oJ+V .V REF RG2 +IN -IN

Analog Devices
AD524
Instrumentation Am

?‘F_ﬁlﬁ“mmmmrﬂ“‘ﬁ%
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Figure 2.12: Photopotentiometer Circuit

range of measurement along these axes would include as much as possible of the fluid
motion during spin-up. They acted as voltage dividers, sending on a portion of the
10-volt input signal in accordance with the amount of light which the moving fluid
blocked. The resulting signal passed through the slip rings to the terminal block of
the data acquisition computer. The circuit diagram is shown in Figure 2.12.

Each of the two tanks was equipped with an SK46 light bulb whose filement was
positioned about 1-1/8 inch below the top of the tank. The two bulbs were wired in
series across the 10-volt power supply, which also supplied power to the strain gage
and photopotentiometer circuits.

Figure 2.13 shows the termination connections of the data acquisition computer

used in the experiment. An IBM PS/2 equipped with a National Instruments Data
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Figure 2.13: Data Acquisition Terminal Block Connections

Acquisition card was used. Specialized data acquisition software was written in Ba-
sic. The scan rate was 100/second, and for the spin-up runs, the strain gage and

tachometer channels were given a gain of 10 in order to improve resolution.

2.3.2 Calibration

The tachometer, strain gages, and photopotentiometers were calibrated before
the spin-up runs were performed. Photopotentiometers 1 and 2 were calibrated
against pre-computed fluid displacements for steady-state spin velocities. In other
words, for each steady-state spin rate, there is a stationary free-surface position,
which was computed analytically. These values were compared to potentiometer
voltage output at several steady-state spin rates (tanks constrained against radial

displacement) in order to arrive at calibration curves for photopotentiometers 1 (in-
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board) and 2 (outboard). (About 200 data points were taken at cach spin rate.)

These curves were then fit with polynomials as shown in Figures 2.14 and 2.15.
All photopotentiometer calibrations and spin-ups were performed with room lights

off and tank-mounted light bulbs illuminated.

At the same time, the tachometer was also calibrated. Precise values of angular
speed were obtained by adjusting the motor rheostat and counting revolutions. After
the speed was adjusted to the desired value, the tachometer voltage readings along

with those of Photopotentiometers 1 and 2 were taken by the computer.

Figure 2.16 shows the tachometer’s voltage output, which is nearly linear with
speed. The above procedure did not provide a large enough range for Photopoten-
tiometer 3 (lag), since fluid displacement at this sensor is small for a steady-state
speed. Therefore, this sensor was calibrated manually. The tank assembly was dis-
connected at the cross-bar and was tilted enough to achieve fluid surface displacement
at 0.1 to 0.5-inch increments on a graduation strip along the photopotentiometer.

At each position, the data were recorded by hand. The resulting correlation of
voltage output to free-surface position was fit with a polynomial, and is shown in
Figure 2.17.

Finally, the strain gage circuit had to be calibrated. This was done by inserting
various gage rods between the tanks in order to separate them by a known distance
and sampling the resulting strain gage voltage output.

The gage rods were first fabricated to lengths of 11.50, 12.00, 12.50, and 13.00 %
0.01 inches. Next, the strain gage bridge circuit was balanced by adjusting its balance
potentiometer so that the voltage output was approximately zero when the 12.00-

inch gage rod was inserted (this causes the tank to be in the zero-gravity equilibrium
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position, centered 10 inches from the axis of rotation). Also, the gain potentiometer
on the bridge circuit amplifier was set so that the voltage output would increase
approximately one-tenth volt for each additional 0.5 inches of spread between the
two tanks.

Once the strain gage bridge circuit had been adjusted, calibration could begin.
Each gage rod was inserted between the bottom plates of the tank housings, one-half
inch in from the corners of the plates, on the side of the axis where the terminal
strip is located. For each rod, about 200 voltage samples were taken by the data
acquisition computer, and the process was repeated twice. Figure 2.18 shows the

resulting curve fit, which is quite linear.

2.3.3 Experiments

Three spin-ups were performed at each of the following target speeds: 30, 60,
and 90 rpm (revolutions per minute). Each spin-up procedure consisted of starting
the rig at a near-zero rotational speed and smoothly accelerating the rig to a set
target rotational speed by manually turning the rheostat control of the DC motor.
Since the duration of the acceleration was on the order of one second, significant
sloshing was induced.

Data acquisition began just before spin-up in each case. One hundred samples
per second were taken on each channel for a duration of 4 seconds. The resulting
sample times and voltages were saved to a computer data file.

A FORTRAN program was written to put the raw data into meaningful form.
After reading the raw data files, it used the polynomial curve fits from the calibration

to translate the voltages into speed, ration of free surface height to tank radius (h/r),
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and tank displacement. For photopotentiometers 2 and 3, a subroutine was used to
find the solution to the polynomial equations, since photopotentiometer voltage was

plotted in terms of h/r. It then wrote the reduced data to a file.

2.3.4 Results

The results of all three of the 0-30 rpm spin-ups were very similar; the same was
true for 0-45 rpm and 0-60 rpm. Therefore, the results of only the first run at each

speed are presented here.

Figures 2.19, 2.20, and 2.21 show the angular speed, free-surface position, and
tank deflection for these runs. Zerces are shown on the plots of photopotentiometer 3
for times when its output went beyond the range of calibration. This type of clipping
was also necessary for photopotentiometer 1 (inboard) in the time period just before
t = 1 second because the output voltage dropped below the -7.05-volt calibration

limit. In this range, the calibration was very sensitive.

The general behavior of the system was what one might expect: as the speed
increased from a near standstill, the fluid sloshed toward the outer part of the tank,
resulting in positive readings of h/r on the outboard side, and negative ones on the
inboard. At the same time, the flexibility of the structure allowed the tank to flair out
by about 3/4 inch in the 0-60 rpm case. It is interesting to note the approximately 2
to 3 hz oscillations superimposed on the fluid displacement and tank position curves

in each case. This seems to indicate coupling between fluid slosh and tank position.
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2.3.5 Numerical simulation

Two of the experimental runs described above were taken for comparison with
results from computer simulations. As part of the research on liquid sloshing in spin-
stabilized satellites, two codes have been developed: the first one, STRUCTURE,
calculates the flexible system dynamics and the second, SLOSH3D, computes the

sloshing motion of the fluid inside the tank.

These two codes have been integrated into one unit, where the two can exchange
information about the tank-fluid system. At each time step of the calculations, the
instantaneous positions, velocities, and accelerations (in the three coordinate direc-
tions) of the tank are passed on from STRUCTURE to SLOSH3D. Similarly, STRUC-
TURE gets the location of the mass center and the six components of moments of

inertia of the liquid, as input at the beginning of every time step.

One of the primary inputs to the numerical computations is the rotational speed
of the test rig as a function of time. The data obtained from the experiment were
smoothed to remove measurement noise before being input to the numerical com-
putations. This was done to minimize possible numerical instabilities due to the
oscillatory data. Figure 2.22 a shows the data that was experimentally measured and

the smoothed data that were inpnt to the computations.

The computations were performed on a Cray Y-MP and took approximately 200
minutes of CPU time for each spin-up calculation. The calculations involved marching
the solution in time for 3000 timesteps (each equal to 0.001 seconds) corresponding

to a total time of 3.0 seconds of the actual spin-up experiment.
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2.3.6 Discussion of results

Two computer runs were attempted: one for the final spin-up speed of 60 RPM
and the other for 30 RPM. As the trend of the computed results was similar in both
the cases, only one of them (corresponding to a final spin-up speed of 60 RPM) is
discussed here.

Figure 2.22 shows the comparison of the computed and experimentally measured
results for the 60 RPM case. Figure 2.22b shows the comparison of the free surface
positions (inboard and outboard) between the experimental and computed results
for the 60 RPM case. It can be seen that the transients compare reasonably well for
the inboard end. The outboard data do not compare as well (this aspect is discussed
later in more detail).

Figure 2.22¢c shows the comparison between the experimental and numerically
computed radial positions of the tank center. It can be seen that the comparison is
reasonably good.

The difference in the final outboard free-surface position between the experiment
and the numerical computation is due to several factors, the more important of
these being the experimental uncertainties in measuring the free-surface position, the
uncertainty in the amount of liquid in the tank (computations assumed a fill ratio
of 0.5), and computation of a tank angle that was too small due to the rigid cross-
arm assumption. The numerical results also seem to be smoother as compared to
the experimental data. This is attributed to the relatively coarse grid used in the
computations (41 x 11 x 11).

The final radial position of the tank appears to have been predicted well by the

code. The most significant source of discrepancy in the radial deflection values is
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probably due to the assumption made in the STRUCTURE code of a perfectly rigid
cross arm on the upper body of the test rig. In reality, a small deflection in this bar
most likely results in a relatively large deflection in the tank position.

The rigid cross-arm assumption could also be responsible for the higher frequency
of oscillation in the computed case, which can be seen in Fig. 2.22c. The transient
oscillations in the first one second of the computed results is due to the initial condi-
tion used and the absence of viscous damping. The numerical computations assume
that, at time = 0.0 seconds, the tank is at its vertical position without any static
load and is suddenly subjected to the load due to the fluid mass at time greater than
zero. This is thought to be the main cause of the oscillations seen in the computed

results.

2.3.7 Concluding remarks

Given sufficient time and resources, the experimental and computational results
for the spin-up case could be brought into even closer agreement. Improvements which
could be implemented include: (1) photovoltaic fluid level sensors, which could be
calibrated more reliably over a broader range, (2) inclusion of a flexible crossbar in
the STRUCTURE code, and (3) a finer grid size for computing high-frequency fluid
oscillations in the SLOSH3D code.
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APPENDIX A. Computer Simulation of a Test Rig to Model Sloshing
in Spin-Stabilized Satellites.
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Computer Simulation of a Test Rig
to Model Sloshing in Spin-
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Stabilized Satellites

Certain communications satellites carry liquid stores on board for station tending
and atritude adjustrment. Flowever, sloshing of the liquid can ceuse an undesirable

L. A. Obermaier
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nutational moton of the spin-stabilized vehicle. In previous work a test rig was
designed, built and instrumented to study the interaction berween the rotating struc-
ture and liquid. To augment that experimental project, a computer model of the

test rig has been developed to simulate the dynamic motion of the svstem for various
parameter values. The sloshing liquid was replaced by a two degree-of-freedom
pendulum in the mathematical model. Simulation results were compared with those
Sfrom a general multibody dvnamics program and with experimental measurements
of the test rig motion to demonstrate the mathematicai model’s validity. Good
agreement was achieved in both instances.

Introduction

Extensive research, both analytical and experimental, has
been conducted on the stability of spacecraft having liquid
propellant stores. A rigid body can be stabilized by spinning
about an axis of either maximum or minimum moment of
inertia. Common exampies of spin stabilization about an axis
of minimum moment of inertia include a spinning top or a
football. However, systems containing a significant amount
of liquid mass, such as the INTELSAT [V (Mar:in, 1971 and
Slabinski, 1978) and the STAR 48 (Hill, 1985) communications
satellites, as well as the XM761 artillery projectile (Miller,
1982), have experienced instability when spun about an axis
of minimum moment of inertia. Sloshing of liquid payloads
has been suspected of causing instability of the spin-stabilized
bodies.

Viscous dissipation resulting from relative movement be-
tween a liquid and its container tends to reduce the kinetic
energy of a system. The body, attempting to conserve angular
momentum, is then forced to seek a lower energy state. For
a given amount of angular momentum. spin about an axis of
maximum moment of inertia represents the minimum energy
state possible. If a body spun about its axis of minimum mo-
ment of inertia experiences energy dissipation, it will seek the
lower energy state and wiil end up spinning about its axis of
maximurn moment of inertia if unrestrained. This is known
as a flat spin.

Agrawal (1981) states that for a body with flexible elemeats,
the ratio of the moment of inertia of the spin axis to that of
the transverse axis must be greater than one for stability. Thus,
to be stable, a body conrtaining liquid must be spun about an
axis of maximum moment of inertia.

Several launchings of the STAR 48 communicadons satellites

Coatnbuted by the Dynamic Systems and Conurol Division for publicauon
in the JOUmNAL OF DYNAMIC SYSTEMS, MEASURZMENT . AND CONTROL. Manuscnot
received by the Dynamic Systems and Control Division Novembper 1989: revised
manuscript received Apeal 1992, Associate Techrucal Editor: N. S. Nathoo.

Journai of Dynamic Systems, Measurement, and Control

resulted in a coning motion of the spacecraft. Hill (1985) used
an equivalent mechanical pendulum model, along with a mass
representing the main body and rocket motor to approximate
the STAR 48 system. He developed control laws using line-
arized eguations of motion.

The INTELSAT [V communications satellite also experi-
enced instability once launched. Slabinski (1978) conducted
in-ocbit testing of the sarteilite. as weil as a theorerical analysis,
to study the sloshing phenomenon inside the tanks containing
liquid propeilant. He deveioped relationships between driving
frequencies and nutation frequencies. Marun (1971) exper-
mented with tanks of liquid propellant on earth. Marun.
through his experimental investigations. found that when a
spinning tank is subjected to angular oscillations about an axis
which is not parallel to an axis of symmetry of the tank.
turbulent fluid motion is excited. However, when the tank is
accelerated rectilinearly, the motion of its contents is relatively
caim. like that of a rigid body. Because a sphere is axisym-
metric, liquid in a sphere did not experience the turbuient
mouon that it did in differently shaped tanks. [n the sphencal
tanks, the liquid behaved like a pendulous rigid body.

Many analytical attempts to quantify the movement of lig-
uids in tanks have used a pendulum analogy. Such an anaiogy
assumes that the liquid inside the tank moves as a sphencal
penduium would under the same conditions. Sumner (1965)
deveioped relations to describe a pendulum representing the
liquid in spherical and oblate spheroidal nonrotating tanks as
a function of tank geometry and fill fraction. The mass of the
pendulum is not equal to the mass of the liquid in the tank.
A nonsioshing mass is fixed at approximately the center of the
tank. The sum of the nonslosh mass and the pendulum mass
is equal to the total liquid mass. Sayar and Baumgarten (1982)
included a rotauonal damper and a cubic spring in their pen-
dulum analogy to improve Sumner’s model in the nonlinear
range.

Zedd and Dodge (1985) examined the energy dissipated bv
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liquids in rotating spherical tanks using a pendulum analogy.
Their model included a pendulum, a rotor, and a viscous dash-
pot. Through this analogy, they developed equations for nat-
ural frequencies of the pendulum as functions of tank location,
tank fill fraction, and the spin rate of the tank.

Cowles (1987) built a test rig to model a satellite containing
liquid fuel stores. His model consisted of a motor driven shaft
which supported a semi-rigid assembly. The assembly was con-
nected to the vertical input shaft by a Hooke’s type universal
joint. The assembly held two tanks which were partially filled
with water. By altering the location of the tanks and the di-
mensions of the assembly, Cowles was able to achieve a variety
of test conditions, inciuding spin about axes of maximum,
intermediate, and minimum moments of inertia. When spun
abourt an axis of maximum moment of inertia, the assembly
was extremnely stable, even when perturbed. The assembly,
however, feil immediately into a flat spin when spun about an
axis of intermediate moment of inertia. Though a configu-
ration was designed and built for spin about an axis of min-
imum moment of inertia, tests were never completed because
it was felt the assembly might be damaged in a collision with
the supporting structure if it attempted to go into a flat spin.

Anderson (1988) redesigned the mechanical assembly built
by Cowles. Anderson’s assembly included a restricting collar
so that even an unstable test assembly could not damage 1tself
or the supporung structure. The redesign included instrumen-
tation in order to acquire guantitative measurements of the
motion of the assembly and the liquid contained in it. Just as
predicted, Anderson found the case of spin about an axis of
minimum moment of inertia to be unstable.

The work described in this study develops the equations of
motion for the test rig designed and constructed by Cowles
and Anderson. Equauons of motion were derived using La-
grange's equations. State variables were chosen to best match
the quantities measured by Anderson’s instrumentation.

The liquid in each of the tanks was modeled as a two degree-
of-freedom pendulum. This approach can only account for
free surface liquid oscillations which will have natural fre-
quencies greater than the coning frequency for the test rig. In
order to account for lower liquid oscillation frequencies of the
type associated with internal or inertial waves, a more complete
model would have to be used. This would be important, for
instance if one wanted to study oscillations strongly coupled
to the coning motion.

The equations of motion developed for the pendulum anal-
ogy were numericallv integrated. Resuits of the numerical sim-
ulation were compared with those from an existing rigid body
dynamic analysis program to verify the validity of the nu-
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menical simulation. Simulation resulits were aiso compared with
Anderson’s experimental resuits.

Development of Equations

A schematic drawing of the mechanical system modeled :s
shown in Fig. 1. The model contains four rigid bodies. A iower
shaft which rotates in pillow block bearings supports the struc-
ture. The upper assembly is connected to the lower shaft by
a Hooke’s type universal joint. Two pendula, each with two
degree-of-freedom motion representing the sloshing liquid, are
symmetrically attached to the centers of the tanks. The pendula
are assumed to be point masses suspended f{rom the upper
assembly by rigid, massless rods.

A note of clarification is perhaps necessarv (0 define ter-
minology of bodies in the system. The *‘test rig’’ is defined as
the structure that encloses the liquid and its associated sup-
ports, as well as the contained fiuid. This basicallv inciudes
everything supported by the universal joint on the mechanical
assembly. The ‘*upper assembly’’ is associated with the math-
ematical model and does not have a direct physical represen-
tation. The upper assembly is defined as the test rig minus the
enclosed liquid plus the nonsiosh masses.

To develop the equations of motion for the svsiem. a La-
grangian formulation was used. Through the use of coordinate
transformations, position vectors were determined for each of
the bodies. The position vectors were then differentiated with
respect to ume to determine velocities for the bodies. The
kinetic and potential energies of the bodies were then devei-
oped. Once the equations of motion were determined according
to Lagrange’s equations. they were numericaily integrated us-
ing a douple precision version of DIFFEQ, a numericai inte-
gration program.

Coordinate Transformations and Body Positions. The po-
sitions of the bodies were determined through simpie coor-
dinarte transformations consisting of rotations and transiations
of Cartesian coordinates. All coordinate svstems used were
defined to be right-handed.

The x,-%,-Z, coordinate system is stationary and is positioned
at the center of the universal joint. The I, axis is directed
vertically upward. Positioning of the X, and y, axes is arbitrary.

Transformation to the ¥.-¥.-{, coordinate svstem is achieved
by a nght hand rotation about the I, axis. The ¥.---7. co-
ordinate system 1is atiached to the lower shar: of the test nig
and its origin is at the center of the umversai joint. The x--v..
3. axes are fixed in such a way that wpnen the 7. and I. axes
are aligned. the v. components of the posiuon veciors of n
pendulum supports are zero. Generally, the matnx {4..] :
defined such that

I\ :?
' ( = [A l/]
1

) \ l)‘

The transformation matrix from the x.-¥.-Z; coordinate systern
to the X,-¥,-Z, coordinate system. [A4.], is given in the Ap-
pendix.

The rotation of the upper assembly relative to :he lower
shaft is defined by the two rotation angles, A. First. a rotation
by an amount A, about the J. axis defines the transformation
to the X;-¥;-7; coordinate system. Then the coordinate system
is rotated through an angie A; about the x, axis (1o arnive at
the X,-v,-2, system.

The X,-9.-Z coordinate system is fixed to the upper assembiv
in such a way that the ¥, components of the position vectors
from the universal joint to the pendulum supports is zero. The
origins of the X;-y;-Zy and X-y,-Z, svstems are located at the
center of the universal joint. The rotauons between the 2. 3.
and 4 coordinate systems are shown in Fig. ;.

wo

[ T
[N TR

Transactions of the ASME




]
)
1]
ih

"
(o

fenguiv—™

. <
n=-": "n+l

Fig. 2 Rotation coordinates for pendulums

Because the body is assumed to be axisymmetric, the position
vector of the upper assembly is given by

Tus = 0Zs (2)

where o is defined to be the height of the center of gravity of
the upper assembly above the universal joint when A, and A,
are equal to zero.

The pendula. which represent the water in the spherical
tanks, are dispiaced from the universal joint. The physical
constants 7 and (cg) are defined such that the ~osition vector
of the support of pendulum 1 is ré; = (¢2)Z.. Consequently,
the orig.n of the X:-ys-I; system is defined 0 be at r%, -
(c2)Z.. This is the location of the hinge point of pendulum 1,
and alsr the location of one of the nonslosh masses of the
upper assembly. Similarly, the origin of the {-7¢-3; system is
located a. -rxXs - (¢g)Z,, which is the location of the hinge
point of the second penduium, as well as the sezond nonsiosh
mass. There are no relative rotations for :he Xi-Vi-2,, SeVe-Ts,
and f£q-ye-3; coordinate systems.

The radial rotation of the pendula are defined by the angies,
4. The angle 8, is defined py right hand rotauon of the Xg-ve-
25 systen. about the ¥ axis. In a parallel rashion. the angle 4,
is defined by right-hand rotation of the {.-¥y-7: svstem about
the ¥4 ax's. Note that if both penduia are flarsd outward from
the universal joint by an amount §, then 3. = -3 while §, =
-4d.

Circumferenual (or tangential) rotations of :he pendula are
describea by the o angles. The ¢--y--I: axes are rotated through
the angl® o, about the ¥4 axis. The £-—-v--3- coordinate svstem
is fixed ic pendulum 1. Sirnularly, the ¥,4-V,o-3;p axes, which
are fixed (o pendutum 2, are rotated through an angie o- about
the g axis. Rotauons of the pendula reiative 10 the upper
assembiy are represented in Fig. 2.

The local position vectors of the pendula, r, and r,; are
easily defined as

rp‘ = -[27 (3)
and
Fr= =l (@)

where / is the length of the pendulum. This length is a function
of tank size, tank shape, and fill heignt.

By direct substitution, the position vectors of the bodies can
be expressed in terms of world coordinates. Thus,

X, Xo
T =laaaniiana|? (5)
: )

The overall transformartion matrix. (A 4], is simply the produc:
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given by (A 3] {A2] {A ). Since r,, = pZ,, it can be expressed
as

Fuo =p(cOS ¥ sin A €OS Az +sin ¢ sin N\y)X,
+p(sin 3 sin Ay cos Ay — oS ¥ sin Ay,
+p €COS Ay COS Nqd (6)
In similar fashion,

2, X<
21 =Aulldslidsidsia {7 ?
l 1
and
2, %ro
?, = (A4 llA nl{A WA alfA sllA s 0l ?:, ®)
1

The position vectors r, and r,,, expressed in terms of world
coordinates, are presented in the Appendix.

Body Velocities and Energies. The transiational velocities
of the center of mass of the upper assembly and the two pendula
can pe determined by differentiating their position vecrors with
respect to time. Using the chain rule of calculus,

dr ar dg,
v-dr:‘ aq; dt 2

-]
Thus, differentiation of Eq. (6) produces
v.e=0({5(cOs ¥ sin Aa—sin ¥ sin A\, cos A1)

-\, cos ¥ cos A, COS A»

- ,\:(-cos ¢ Sin A, sta As - $in ¢ cos A3)]X,

- pf¥(cos ¥ sin X, cOs A»=sin & sin A,)

— X, sin ¢ cos Ay CO§ Aa

- \;(-cos ¥ €os A =sin & sin A, sin Ay,

—a(X,_ Sin A €OS As = X: cos Ay sin A3)E; (10

Veiocity vectors of the pendula are determined in an idenucal
fashion. Due to their lengthiness, however, they are shown in
the Appendix rather than here.

Using the addition theorem for angular velocities, the an-
gular velocity of the upper assembly can be expressed as a sum
ol simpie components as

wee= Vi1 = N J1+ Aok an
or expressed in terms of body fixed axes:
Wue =(— ¥ Sin Ay = Ak,
= (¥ cos Ay sin Ay+ A, €OS Aq)Fs
(12)
Theinertia dyadic of the upper assembly, 1., can be expressed

+ (¢ cOs Ay cOs A2~ A, sin Aa)Z,

as
Lig=laXsiyr [y,};dyll I3

+lo(RaJa+ Jske) + [ (JeZs+ 10 (13)
where ¢, is defined to be the inertia scalar of the upper as-
sembly relative to its center of gravity for unit vectors ¢, and
7s. Note that the body is assumed to have zero products of

inertia about its center of gravity for the £, and I, axes.
The anguiar velocity of the lower shaft is simply

(14

ug,su'r:';
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Table 1 Test rig data for comparison between CAMS and
SATELL. For these runs the transverse priacipal moments of
inertia were both equal to /,.

run 1ol sphere % r (cg) spin 1, 1,
mass diam fill speed
shug f ft ft pm slug ft°  slug fr?
1S 2.0 1 50 1 0 100 2.2 1.39
1C 2.0 1 50 1 0 100 2.2 1.39
iS 2.0 1 S0 1 0 100 2.08 3.47
3C 2.0 1 50 1 0 100 2.08 3.47
010
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Fig. 3 Comparison of upper assembly rotation given by A, for CAMS
Case 1C and SATELL Case 1S
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Fig. 4 Comparison of upper assembly rotation given by A, for CAMS
Case 1C and SATELL Case 1S
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Fig.5 Comparison of radial rotation of penduium 1 given by 4, for CAMS
Case 1C and SATELL Case 1S

The relevant term of the inertia dyadic for the lower shaft
is the moment of inertia of the shaft about the I, axis, /,.
Because the pendula are assumed to be point masses, their
inerua dyadics are zero.

The kinetic energy, T, of the system can now be calculated
by summing the rotational and transiational kinetic energies
of all the bodies:

1
T=£ M¥p Vs, ’z MsVpy*Vor ‘5 MygVua®Vue
1

-~ “’uc‘lua""ua’& "’!x’ll.r'“’!: (15

- -
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Fig.7 Comparison of half cone angle, 3, tor CAMS Case 1C and SATELL
Case 1S

where m, is the mass of a pendulum and m,, is the mass of
the upper assembly.
The kineuc energy is expressed in matrix form as

T=11q)7Mt4) (16)

where the matrix {M], shown in the Appendix, is symmerric.
The vector |gq] is defined as

fgi=1\6 (17)

The potential energy, V, of the system is determined from
the elevation of each of the bodies. Thus,

V=m,.go cos Ay cOS Ay + My[l sin A\q(sin 6, cos o,
+5in 8 cOs @1) =/ €OS Ny COs Aax(cos §; cos @ < cos §; cos ©32)

+1¢os Ay sin hy(sin &, +sin @) +2(cg)cos Ay cos Az (18)

Lagrangian Formulation. The Lagrangian, L, for the sys-
tem is defined simply as L = T ~ V. Equations of motion
can be determined from Lagrange’s equations of the second

kind as
dfaL) oL
2(2) _ZF, r=t... .0
dt(éq,) P /

The generalized force, F,,, due to viscous damping can be
expressed as

(19

Fo=cq, r=1,...,7 (200

where ¢, is the viscous damping coefficient expressed in di-
mensions of torque per unit anguiar velocity.
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Table 2 Test rig data for comparison between experimental
results and SATELL. For these runs the transverse principal
moments of inertia, /,, and /., were slightly different.

run total height spin 1, 1, I
mass of c.g. speed
slug ft rpm  slug ft®  slug ft°  slug fi°
1E 0.507 -0.080 -100 0.223 0.343 0.340
ISE 0.507 -0.080 - 100 0.223 0.343 0.340
2E 0.431 -0.121 -70 0.324 0.280 0.289
2SE 0.431 -0.121 -0 0.324 0.280 0.289

Substituting L = 7 - Vinto Eq. (19) and noting that V
does not depend on g we have

4(aT\ _oT v _.

dt\dq,) dq. dq ¥
Since T = 0.5 {1]}7 [M] {q} where [M] does not depend on
g, the first term on the left hand side of Eq. (21) is determined

by

r=1,...

" @

aT .
—= 22
3. Mliq] 22)
and by the chain rule of calculus,
d[aT . .
- =] = 2
dr<aq,) Mligq) +[Miiq) (23)
For the second term on the left-hand side of Eq. (21),
T | M, . .
—_— —lg, 24
. 2§aq,‘”’ (24)
=l
So that the equations of motion become
— . o M,
Z (M,,q,-v-M,,q,) - Z (_l q.9,
.- -] aqr
J=1
1% -
+a—q’=FC, r=1,..., 7 (25
These equations are assembled into a matrix form,
: . . av)
(g} ~[M){q} - [DELM] (g} - o) 1F,) (26)
Mi{g} ~M] q (39 P
where [DELM)] is defined by
DELM, = 3 M o (27)
&1 9

This system of equations was numerically integrated using
a double precision version of DIFFEQ, a numerical integration
program. The user of DIFFEQ must supply a subroutine which
computes the derivatives of the state variables with respect to
the independent variable, given the current vaiues of the in-
dependent variable and the state variabie.

Simulation Results

To ensure the accuracy of the equations of motion, simu-
lation results were compared with those from a multibody
dynamics program called CAMS. Results were also compared
with experimental data.

CAMS (Control Analysis for Mechanical Systems), a three-
dimensional multibody program, was used to verify the ac-
curacy of the previously denived equations of motion. To run
CAMS, a user creates a data file specifying the type of con-
nection exisung between bodies, as well as the inertial prop-
erties, initial positions, and initial orientations of all of the
bodies in the system.

Because CAMS is more generic than the program tailored
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specifically to solve the satellite problem, it was considerably
more ume consuming to generate an input data file tor CAMS
than for SATELL, the specific program written for this study.
Several runs were completed using CAMS. However, only two
representative runs are dispiayed here for brevity.

The physical values of the test rigs used for the analyses are
given in Table 1. /; is defined as the moment of inertia of the
test rig about its spin axis. /, is defined as the moment of inertia
of the test rig about a transverse axis through its center of
gravity. For all runs in this section, the center of gravity of
the test rig at its initial speed is located at the universal joint.

Figures 3-7 compare the output of CAMS and SATELL for
a case in which half filled, one ft diameter spheres spin about
an axis of maximum moment of inertia (specifically, /,/]. =
1.6). Results for angles associated with pendulum 2 were very
similar to those for pendulum |, and thus are not displayed.
Figure 7 shows the half cone angle versus time for each of the
programs, where the half cone angle, 3, is defined to be the
angle between the Z, and Z, axes. Mathematically,

B=cos™'(cos \, cos Ay) (28)

These two runs verify that the motion of the system is stable
for spin about the axis of maximum moment of inertia. This
can be seen, for example, in Figs. 3 and 4 where the magnitudes
of the oscillating upper assembly rotation angies are decreasing
with time. The effect of decreasing amplitude with time is even
more pronounced for the radial rotation angles for the pendula
as illustrated in Fig. 5. More important, however, is the ex-
ceptionally close agreement apparent between the CAMS and
SATELL simulations. The output motions for the two runs
displayed in Figs. 3-6 are so close, in fact, that thev are in-
distinguishable. There is slight disagreement in the half cone
angle curves depicted in Fig. 7, but even that difference is very
small, with a phase difference of less than 0.01 s appearing
early in the simulation.

Figures 8-11 compare the results of CAMS and SATELL
for the case of spin about an axis of minimum moment of
inertia. Both simulations indicate that the resuiung motion is
unstable as seen in Fig. 10 where the magnitude of the radial
rotation angle for pendulum 2 is increasing with time. Figure
11 shows thart the half cone angle also increases as the system
seeks to reorient itself to spin about the axis of maximum
moment of inertia. Once again, the two simulatons agree so
well that the pairs of curves piotted in Figs. 8-11 are identcal
except ror a very slight difference that can be detected in the
half cone angle of Fig. 11.

Comparison With Experimental Data. To determine the
validity of the mathematical model, output from SATELL was
compared with Anderson’s (1988) experimental results.

In his experiments, Anderson used six-inch plastuc spheres.
Physical properties of two of the test rigs used in expeniments
are given in Table 2. In both cases. the spheres were half full.
Two transverse moments of inertia are listed, with /,, the mo-
ment of inertia of the test rig about the %, axis and /,; the
moment of inertia of the test rig about the y, axis.

Figures 12-15 show a comparison of experimentai data and
SATELL output for spin about an axis of minimum moment
of inertia, runs lE and ISE. Only about ten seconds of ex-
perimental data could be acquired before the unstable upper
assembly came to rest on a supporting collar.

Figures 12-15 clearly show that the system is unstable for
spin about an axis of minimum moment of inertia with all the
displayed variables increasing with time. Furthermore, as might
be expected.the SATELL simulation results do not agree as
well with experimental results as they did with the CAMS
simulation.

However, the overall results are very similar in a number of
important respects. For instance, Figs. 12 and 13 show that
the oscillaung magnitudes for the upper assembly rotation
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Fig. 9 Comparison of upper assembly rotation given by A, for CAMS
Case 3C and SATELL Case 3S
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Fig. 11 Comparison of half cone angle, 3, for CAMS Case 3C and SA-
TELL Case 3S

angles are quite close as are the primary frequencies, even
though the initial conditions for the simulation did not exactiy
match those for the experimental run.

Figure 14 dispiays rotation angles for pendulum 2 which do
not agree as well as the upper assembly rotauon angies of Figs.
12 and 13. Once again, though, the curve does show significant
similarities. The overall oscillation magnitude and the fun-
damental frequency are roughly the same. The phase difference
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of Fig. 14 can again be attributed at least partly 10 a difference
in initial conditions.

The half cone angle depicted in Fig. 1S shows quite a bit of
difference between the experimental resuits and the SATELL
simuiation. The oscillaung magnitude for the experimentai run
appears to be about twice that of the SATELL simulation.
Furthermore, the simulation dispiays a single higher frequency
which is approximately twice that of the pnmary frequency
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found in the experimental curve, although there does appear
to be a secondary frequency of lower magnitude in the ex-
perimental results. The one significant similarity between the
two curves, though, is the general increasing trend in the half
cone angle associated with the overall unstable motion of the
system.

Even though the comparison results between the SATELL
simulation and the experimental runs are not as dramatic as
the comparison between the two simulation packages, there is
still a good deal of qualitative and a reasonable level of quan-
titative agreement. Since there were certainly small discrep-
ancies in parameter values for such things as the masses and
principal moments of inertia used in the SATELL simulations,
it is perhaps surprising that the results agreed as closely as they
did.

Conclusions

This work has developed the equations of motion for a test
rig designed to model a spin-stabilized satellite. The applica-
bility of the equations of motion to the motion of a satellite
is based on two assumptions. The first is that the mechanical
assembly is a valid model of a satellite, and the second is that
the mathematical model is a valid model of the mechanical
test rig.

The major accomplishments of the study have included:

e Development of the equations of motion of a spacecraft
simulator using a Lagrangian formulation.

¢ Numerical integration of the developed 2quations of mo-
tion in order o simulate the motion of the test rig.

¢ Comparison with a multibodv dynamics program to verify
accuracy of the equations.

¢ Comparison with experimental results (o determine the
validity of the mathematical model.

Basic theories were confirmed. That is5, that a body con-
taining a sloshing fluid 1s stable when spun aoout an axis of
maximum moment of inertia and unstaple when spun about
an axis of minimum moment of inertia.

Comparison of the results of SATELL with the results of
CAM S showed good agreement. The resuizs agraad very closely.
The relative ease in calcuiating the input values for SATELL
supports its use over that of CAMS for this particular appli-
cauon.

Agreement between experimental data and the output of
SATELIL was reasonable. The results showed similar frequen-
cies and magnitudes. Difficulty in modaiing the experimental
setup arose in determining values for mass moments of inertia
of the test rig. These values were calculated using formulas
for mass moments of inertia of basic geometric shapes. An-
other difficulty was encountered in determining damping coet-
ficients at the universal joint and pendulum supports.

Now that a computer program has been developed to sim-
ulate the dynamics of a spin-stabilized structure carrying liquid
stores, many additional factors can be studied. For example,
different size tanks and different inertias can be considered.
The absence of gravity in outer space can also be simulated
by simply serting the acceleration of gravity zqual to zero.
Furthermore, plans call for additionai development of the com-
puter program (o handle cases where the liquid tanks are not
pertectly symmetric and may not even hoid the same quantity
of liquid.
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APPENDIX
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1 0 0 0
0 cose: =—sinadn O
(As0l = 0 sino, coso¢y O
0 0 0 1

Iy, = [ —flcos ¥(cos A sin 8, cos &,

+5in A\, cos A, cos 6, cos ¢, —sin A, sin A; sin @))
+sin Y(cos A\ sin @, +sin A3 cos 8, cos 6,)]
+7COS ¥ €Os A

+ (cg)(cos ¢ sin Ay cos Aa+sin ¢ sin Xj) X,

{ —{{sin ¥(cos \, sin 6, cos ¢,

+sin A\ cos A, cos 8, cos &, —sin A, sin A, sin &)
— 08 Y(cos Ap sin @, +sin Ay c0s 8; cos o))
+7sin ¥ Cos

+ (¢g)(sin ¥ sin A\ cos Aa — cos ¢ sin N2} } ),
+~[-=/(-sin A\, sin 8, cos o,

+cos A\j €Os Az €Os 8 cos o, —cos A, sin A, sin o))
—rsin Ay = (cg)cos A; cos A;lSy
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—¢0s ¥(cos Az sin @1 +sin Ay cos 6, cos 03)]
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- (cg)sin Ay) +sin ¢ (/ cos A sin 8, cos @,

+{ sin \; cos A\, cos 6, cos &, =/ sin \; sin \; sin ¢,
+rcos Ay + (cg)sin N\ cos A»)]

+ A lcos ¥(—1 cos Ay cos Az cos 8, cos o

+/¢cos A\ sin \; sin o,

+ (cg)cos A, cos A2+ sin A sin 6, cos o,

~rsin A sin Ap)] + Njfcos ¥ (I sin N, cos A, sin ¢,
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+ (cg) sin A\y) —cos ¥ (! cos \, sin 8. cOs @,
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+1sin Ay cos N\, cos 0; cos &, —/ sin A, sin A; sin ¢,
+rCos A, + (cg)sin Ay Cos A1)

+ N\, lsin ¥(—1/ cos N, cos N, cos 8, cos o3

+1{cos A, sin A\, sin ¢,

+ (cg)cos Ay cos Ay +/ sin A, sin 8, cos ¢,
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+@2(/ cos Ay sin \; cos ®y—1sin Ay sin #- sin 02

+1{¢os \; cos N\, cos 8- sin 0)}2,

Because [M)] is symmetric, only the upper elements of the
matrix are displayed here. The lower elements are determined
by M, = M,,.

M =m*{(cos® N, +sin° A, sin® As)(sin” o, - sin” 01)
+¢0s™ \(sin° 6, cos” &, = sin® 6: cOs® 02) — (sin® A,
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+ I sin? N+ 1, cos® A sin® Ay + [ cos® N, cos® A,
—1Iq cos Ny sin Ay sin Ay + 1, cOs™ Ay cos A sin A,

M,: = m1*[cos N y(cos® Ay —sin® \y)(cos 8, cos o, sin o,
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My = m,*[cos® Ny(cos® 8, cOs &, +cos” 8, COS &2)
+sin® )\z(sini oy +sin° ¢2) + (sin’ 8, cos” o,
+5in° 6; cos® ¢1) = 2 cos Ay sin As(cos 8, cos ¢, sin o))
+2mgt+2m,(cg)? cos® Ny — 2m,lr(sin 8, cos o,
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APPENDIX B. Motion Study of a Spin-Stabilized Satellite Test Rig.
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Abstract

This paper demonstrates a stability analysis of a spin-stabilized satellite test
rig. Stability requirements are analytically derived by modeling the test rig
as a system of rigid bodies. The stability requirements are numerically and
experimentally verified. Experimental and numerical data is presented which
shows instability for spin about the axis of maximum principal moment of

inertia.




1 Introduction

In the late 1970s the Air Force launched several Star 48 communication satel-
lites. Once in their geosynchronous earth orbit, these simple spin-stabilized
satellites began to nutate and tumble. Hill {1} identified sloshing fluid stores
as the likely source of the attitude control problems on these satellites. Slosh-
ing fluid has also caused stability problems in other satellites, such as the
Intelsat IV, a dual spin-stabilized satellite, which was investigated by Slabin-
ski [2] and Martin (3].

To enable investigation of the sloshing fluid problem, Cowles 4! de-
signed and constructed a test rig with two spherical fluid tanks symmetrically
mounted in a rigid framework. The upper assembly was attached to a lower
drive shaft with a Hooke’s type universal joint. Figure 1 shows a schematic
of the test rig that Cowles constructed. The test rig is driven by a 1/4 hp
variable speed electric motor. A collar is used to restrain the universal joint
while bringing the test rig up to speed. Once the test rig has reached the
desired speed, the collar is lowered to allow f~=e motion about the universal
joint.

Anderson [5] instrumented Cowles’ test rig. A tachometer was used to




enable measurement of the input spin rate. The pitch and yaw axis rotation
angles of the upper assembly were measured with two rotating potentiometers
that were mounted on the drive shaft below the universal joint. Finally, three
photo potentiometers were mounted on each tank to track the location of
the liquid free surface. The signals from these transducers were transmitted
through a slip ring assembly mounted on the lower drive shaft. Anderson
recorded data from the test rig which produced radial slosh frequencies and
precession rates that agreed with actual in-orbit data for the Intelsat -IV
satellite reported by Slabinski.

Obermaier [6] wrote a simulation program, SATELL, which numerically
integrates the equations of motion for the test rig described above. Obermaier
modeled the sloshing fluid in the test rig's spherical tanks by pendulums
as described by Sumner [7] and Sayer and Baumgarten {8]. The equations
of motion for the test rig were derived using the Lagrangian formulation.
Obermaier found excellent agreement between the results of her simulation
program and the experimentally measured tesponse of the test rig. This
agreement makes SATELL very useful for testing different configurations of
the test rig to identify the test setups which warrant experimental evaluation.
Obermaier also identified frequencies from the simulation output that agreed
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well with the predictions of Slabinski and the work of Zedd and Dodge 9.

In the first part of this study, swability requirements for the test rig mod-
eled as a single rigid body and as a system of rigid bodies are presented.
Agrawal [10] suggests that for stability a spin-stabilized satellite test rig must
be spun about a principal axis with a moment of inertia that is greater than
the transverse principal axes by a calculated margin. This margin was found
by modeling the test rig as a system of rigid bodies and using the approach
of McIntyre and Miyagi [11]. This approach considers the effects of products
of inertia that result from certain sloshing modes of the fluid in the test rig
tanks.

In the final part of this study, experimental and simulation runs are pre-
sented to verify the stability rules. The effects of gravity are also discussed

for each case.

2 Stability Analysis of the Test Rig

According to well-established criteria developed in past experimental research
by Cowles [4] and Anderson [5], a spin-stabilized satellite test rig must be

spun about its axis of maximum principal moment of inertia to be stable.




Greenwood [12]| analytically derived this rule is by assuming that a satellite
behaves as a single torque-free rigid body, and by noting that kinetic energy
is dissipated by the sloshing viscous fluid in the satellite fuel tanks while the
total angular momentum remains coustant. Since each axis of the test rig
has a different moment of inertia. the kinetic energy level for spin about each
axis is different for a given angular momentum. To conserve momentum the
test rig will seek to spin about an axis associated with a minimum energy
state as energy is dissipated by the sloshing liquid. For example. if the test
rig is spinning about a given principal axis at a given kinetic energy level
and a lower energy level exists for spin about a different principal axis. the
test rig will try to rotate its spin axis to align with the axis of lower kinetic
energy. The minimum kinetic energy is achieved for spin about the axis of
maximum principal moment of inertia.

As stated earlier, the above stability rule assumes that the test rig behaves
as a single torque-free rigid body. However, in work by Obermaier [6! the
test rig was modeled successfully as a system of rigid bodies consisting of a
center body with two attached pendulums as shown in Figure 2. The two
pendulums model the fluid in the two test rig tanks as described by the
work of Sumner [7]. Agrawal [10] has shown that for stability, spin-stabilized
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satellites must be spun about a principal axis with a moment of inertia greater
than the other principal axes by a calculated margin. Stability rules for the
system of rigid bodies of Figure 2 are found using the approach of McIntyre
and Miyagi [11]. This approach again assumes a torque-free condition and
involves considering the test rig balance with respect to the oscillation modes
of the pendulums. The stability rules for this system of rigid bodies verify
Agrawal’s conclusions that spinning the test rig or a satellite about its axis
of maximum principal moment of inertia is not enough to insure stability.

Mclntyre and Miyagi’s approach begins with studying the four fundamen-
tal pendulum oscillation modes shown in Figure 3. These oscillation modes
must be evaluated for nonzero products of inertia. Nonzero products of in-
ertia can cause misalignment between the reference z-axis of the test rig and
the axis of maximum principal moment of inertia or spin axis since the spin
axis will be coincident with the principal axis. The test rig is considered to
be out of balance when misalignment between the spin axis and the z-axis
exists.

Pendulum oscillation Mode 1 from Figure 3 generates one nonzero prod-

uct of inertia, I,,. Agrawal [10] shows that the misalignment between the




spin axis and the z-axis resulting from this product of inertia is expressed as

- (1)

where 8, is a rotation of the spin axis about the test rig's x-axis. It is also
important to note that I,. is the product of inertia of the test rig about its
center of mass, and I, and /. are composite moments of inertia of the test
rig (including pendulums) also about the center of mass.

Pendulum oscillation Mode 2 from Figure 3 also generates one nonzero
product of inertia, [,,. However, this product of inertia does not affect the
test rig’s balance.

Since the pendulum oscillation Mode 3 from Figure 3 yields no products
of inertia, it also has no effect on the test rig’s balance.

Pendulum oscillation Mode 4 from Figure 3 generates one nonzero prod-
uct of inertia, I;.. The misalignment between the spin axis and the z-axis

caused by this product of inertia is expressed as
y P

(2)

where ¢, is a rotation of the spin axis about the test rig’s y-axis. As before,

I.. is the product of inertia of the test rig about its center of mass, and I, and




I. are composite moments of inertia of the test rig (including pendulums)
also about the center of mass.

Equations (1) and (2) show that Modes 1 and 4 are the only modes that
offset the balance of the test rig. Continuing with McIntyre and Miyagi's
approach, we must take precautions to prevent these modes from occurring.

First, the products of inertia for Equations (1) and (2) must be defined
in terms of test rig dimensions. Then, stability rules must be developed
with respect to the products and moments of inertia to prevent pendulum
oscillations.

Figure 4 shows the rotation of the spin axis about the test rig's x-axis
that results from pendulum oscillation Mode 1. Equation (1) defines the
angle of rotation §.. The product of inertia, I,., for Equation (1) is defined

in terms of test rig dimensions as
I, =2M/(CG)Lsing (3)
where M, is the pendulum mass. Then, for small 3
I,, =2M,(CG)L3 (4)

Figure 4 also illustrates that the center of mass of the test rig is moved along
the y-axis as a result of pendulum Mode 1 by the distance E,. The center of
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mass is located by

E, M= 2M,Lsin 3 (5)

where M, is the total mass of the test rig. Simplification for small 3,

produces

2M,L3
E, = 2
Y “I tot

(6)

Figure 5 shows a view of the test rig’s xy-plane containing the pendulums.

The spin axis intercepts the y-axis on this plane at Y1 where

Yl =E, - (CG)tan®, (7)

Simplification for small angles and substitution for 8, and E, from Equations

(1) and (6) yields

(8)

’ 2
Y1=-2M,LB( ! (e )

Mo I.—-1,
Also shown in Figure 5 is the intercept of the extended pendulums with the
y-axis which is given by

Y2=Rtan3 = R3 (9)

Now if Y1 is larger than Y2, 3 will increase in the xy plane as centrifugal

forces align the pendulums perpendicular to the spin axis. Thus, for stability
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Y2 must be larger than Y1. With the help of Equations (8) and (9) this

results in the following expression

1 G
R3 > -2M,L3( - ;CC

)2
Moy - Iy) (10)

If 3 is cancelled and terms are rearranged, the stability rule becomes

I:—Iy>—’§(‘CGL'

1

‘ (11)
MLL T M

Figure 6 shows the rotation about the test rig's y-axis that results from
pendulum oscillation Mode 4. This rotation angle is defined by Equation
(2). The product of inertia I.. in Equation (2) is written in terms of test rig

dimensions as

I.. = MR+ Lcosa)((CG)+ Lsina) - (12)

M, R+ Lcosa)((C'G) — Lsina)
Simplifying for small a and combining terms, one finds
I..=2M,L(R + L)a (13)

How, if 6, is larger than a, a will increase in the xz plane as centrifugal

forces align the pendulums perpendicular to the spin axis. Thus for stability,




6, must be less than a. Equations (2) and (13) may be used to develop the

following expression,

2M,L(R + L)a
I. - 1.

<a (14)

After cancellation of o and rearrangement of terms, the stability rule becomes

I.—1I.,>2M,L(R+L) (15)

3 Verification of Stability Rules

The computer simulation program SATELL, and the experimental test rig
were used to verify that Equations (11) and (15) govern the global stability
of the test rig. As stated earlier, these stability rules were developed for a
torque-free system of rigid bodies, but the test rig is of course subject to
torques produced by gravity. For this reason, SATELL was also used to
study the influence of gravity on the response of the test rig. A zero gravity
environment was created by setting the acceleration due to gravity equal to
zero when running SATELL. Since SATELL results and experimental data
were used extensively, it is necessary to discuss the operational characteristics
of both.

Obermaier [6] modeled the test rig with four bodies consisting of a rigid
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upper assembly attached to a lower support shaft by a Hooke's type universal
joint and two spherical pendulums which are symmetrically attached to the
upper assembly. She compiled the equations of motion for this system of
rigid bodies and developed a computer program named SATELL which is
run with a double precision integration program named DDIFFEQ. Before
SATELL can be run, initial conditions must be specified for the angles that
define the positions of the rigid bodies, and all constants must be defined.
There are four sets of Cartesian coordinates which are used to describe the
orientations of the upper assembly.

The z; — y; -- %; coordinate system is stationary and is positioned at
the center of the universal joint. The %; axis is directed vertically upward.
Positioning of the Z, and y; axes is arbitrary.

Transformation to the Z; — §, — 2, system is achieved by a right hand
rotation by an amount ¥ about the 2; axis. The z, — y5 — %, coordinate
system is attached to the lower shaft of the test rig and its origin is at the
center of the universal joint. The &; — §, — 5, axes are fixed in such a way that
when the Z; and Z, are aligned, the j, components of the position vectors of
the pendulum supports are zero.

The rotation of the upper assembly relative to the lower shaft is defined

I1




by the two rotation angles, A. First, a rotation by an amount A, about the g,
axis defines the transformation to the &3 — J3 — 23 coordinate system. Then,
the coordinate system is rotated through an angle A, about the 3 axis to
arrive at the &4 — §4 — 34 system. The &, — g4 — 3, system is attached to
the upper assembly as shown on Figure 1. Figure 7 shows the rotations for
the upper assembly on the universal joint about the lower support shaft. It
should be noted that when running SATELL, A, and A, cannot be initially
set to zero since this will cause singularities when integrating.

I3

The remaining inputs for SATELL are L, R, CG, M,. M., I.. fy, I..
p, and spin rate. The inertia inputs to SATELL are for the rigid assembly
including the nonslosh masses, not the steady state composite moments of
inertia as defined previously. The constant p is defined to be the height of
the center of gravity of the upper assembly above the universal joint when
A; and A, are equal to zero. The constant M, is defined as the mass of the
upper assembly of the test rig including the pendulum nonslosh masses. All
other variables are as previously defined.

The test rig is equipped with nine transducers for making measurements.
There are two rotating potentiometers, one on the £, axis and the other on

the y, axis, that enable the measurement of variables that can be used to solve
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for A; and A;. There are three photo potentiometers on each tank to measure
the fluid free surface location. The final transducer is a tachometer that
enables measurement of the spin rate. The signals from these transducers are
transmitted through a slip ring assembly mounted on the lower drive shaft.
An IBM model PS/2 equipped with a National Instruments data acquisition
card was used to collect experimental data from the test rig. Eight channels
of input were utilized to record data from the rotating potentiometers and
the photo potentiometers. A voltmeter attached to the tachometer was used
to set the spin rate.

The first step in the experimental procedure was to perform the trans-
ducer calibrations as described by Anderson [5] with the rigb in the desired
configuration. Next, the rig was brought up to speed with the collar up. The
data acquisition program was then started and the collar was released. The
experimental data recorded with the IBM was then down loaded onto a VAX
11/785 mainframe for plotting.

A limitation of the test rig that appears in the experimental data is that
it can only rotate *.2 radians (11.4 deg) about the £, and y, axes. Also, for

radians

safety, the test rig spin rates were kept below 14725922 (133.7 rpm).

second

The global stability of the test rig is governed by Equations (11) and
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(15). Equation (11) must be satisfied to ensure stability about the x-axis or
to restrain the horizontal pendulum oscillation Mode 1 of Figure 3. Equation
(15) must be satisfied to ensure stability about the y-axis or to restrain the
vertical pendulum oscillation Mode 4 of Figure 3.

This section deals with test rig configurations where the steady state
composite center of mass is located at the universal joint. This requirement
insures that gravity produces no net moments on the test rig. Also. this
configuration is nearest to simulating an actual satellite in orbit. Using the
dimensions for the two test rig configurations given in Table 1 in Equation

(15), results in

I, — I, > 0.011slug ~ ft* (16)

Since both of the configurations in Table 1 satisfy Equation (11), Equa-
tion (16) governs the stability of these configurations. Run 1 of Table 1 does
not satisfy Equation (16) and should result in an unstable response of )\,
about the 3, axis caused by the vertical pendulum oscillation Mode 4 of Fig-
ure 3. Furthermore, inspection of the steady state inertias in Table 1 for Run

1 shows that the rig is spinning about the maximum principal axis. Figure
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8 shows the experimental response of A; and A, for Run 1. As predicted.
the response of )\, increases with time in an unstable manner. This experi-
mentally verifies Agrawal’s conclusion that spinning a satellite or a test rig
about its axis of maximum principal moment of inertia is not enough to in-
sure stability. Figure 8 shows the numerical response of A\, and A, of Run
1 from SATELL. Root mean square difference calculations were performed
on the numerical and experimental responses over the first second with .05
second increments. The results of these calculations were .048 radians rms
difference for A, and .024 radians rms difference for A;. These small differ-
ences are explained by the difference in the initial conditions for A; and A,
which were both set at .050 radians in SATELL and a nominal zero radians
on the test rig. The nonzero initial conditions for the SATELL run were
required to avoid singularities when integrating. Figure 8 also shows a sim-
ulated response for Run 1 from SATELL with zero gravity and the same
initial conditions as above. This response also closely matches the experi-
mental with .037 radians rms difference for A, and .028 radians rms difference
for A\,. When these differences are compared to those for the simulation with
gravity, one finds that gravity does not affect the response of the test rig
provided the center of mass is located at the universal joint.
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Run 2 of Table 1 satisfies Equation (16) and should, therefore, be stable.
Figure 9 shows the experimental and numerical responses for Run 2 which
are stable for both A\, and A,. The difference between the experimental and

the numerical responses are .013 radians rms for )\, and .008 radians rms for

Aa.

Figure 9 also shows the numerical simulation response for Run 2 with
zero gravity. This response is stable and differs from the experimental by
.015 radians rms on A; and .008 radians rms on \,.

Using the dimensions given for the two test rig configurations shown in

Table 2, Equation (11) becomes

I. — I, > .003slug — ft? (17)

Since both of the configurations in Table 3.2 satisfy Equation (15). Equa-
tion (17) governs the stability of these configurations. The two tanks on the
test rig are located on the x-axis which makes duplicating the four config-
urations in Table 2 with the test rig impossible. For this reason only data
from SATELL is presented.

Run 3 of Table 2 does not satisfy Equation (17) and should be unstable

about the #, axis as a result of the horizontal pendulum Mode 1 of Figure 3.
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This statement is verified in Figure 10 which shows the simulated response
of Run 3 for the test rig where A is steady and )\, is decreasing with time in
an unstable fashion. Since the test rig is spinning about its axis of maximum
principal moment of inertia for Run 3, as shown in Table 2, the unstable
response agrees with Agrawal’s stability criteria as previously mentioned.
Figure 10 shows the zero gravity simulated response of A\; and A, for Run
3 which matches the response with gravity. The similarity between these
two responses implies that the test rig responds similar to an actual satellite
when the composite center of mass is located at the universal joint.

Run 4 of Table 2 satisfies Equation (17) and should be stable. Figure 11
illustrates the stable simulated response of Run 4. Figure 11 also illustrates
the simulated response of A; and A, for Run 4 with no gravity. Again,. the

zero gravity response is nearly identical to the response with gravity.

4 Conclusions

During this study, a great deal of emphasis was placed on understanding the
motion of the test rig with respect to the sloshing modes of the fluid. As

these relationships became clear, the stability requirements for the test rig
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were developed. Simulation runs with SATELL and experimental runs with
the test rig were made to verify theestability requirements and to confirm the
understanding of the sloshing fluid oscillation modes.

The major accomplishments of this study include:

e Stability rules for the test rig were analytically developed and verified

with SATELL and the experimental test rig.

e Numerical and experimental data were recorded for the test rig that
demonstrated instability while spinning about the axis of maximum

principal moment of inertia. This agrees with Agrawal’s work.

e When the composite center of mass was located at the universal joint,
the test rig responded as an actual satellite in orbit. This was verified

by comparing experimental runs with simulation runs for zero gravity.

o When the moment of inertia for one of the transverse axes was too large
for stability and the composite center of mass was at the universal joint,
experimental and simulation data showed that the test rig attempted to
reorient itself to spin about that transverse axis as predicted by single

rigid body theory.

18




Future experimental research will be focused on the the effect that fuid
viscosity has on the stability of the test rig. Also, elastic body effects will be

included in a stability analysis of the test rig by a Lyapunov approach.
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Figure 1: Schematic of mechanical system

L}

Figure 2: Model of test rig

Figure 3: Fundamental pendulum oscillation modes

Figure 4: Spin axis rotation caused by Mode 1

Figure 5: Pendulum oscillation plane for Mode 1

Figure 6: Spin axis rotation caused by Mode 4

Figure 7: Upper assembly rotations

Figure 8: A, and ), versus time for Run 1

Figure 9: A, and ), versus time for Run 2

Figure 10: A; and A, versus time for Run 3

Figure 11: A; and A, versus time for Run 4
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Table 1: Test rig dimensions for Runs 1 and 2

Run1l { Run 2
spin rate Si:—f 10.5 10.5
M, slug 0.0354 | 0.0354
L feet 0.1625 | 0.1625
R feet 0.833 | 0.833
CG feet -0.7705 | -0.6973
M,. (dry) slug 0.7254 | 0.6924 |
I. (upper assy.) slugft? | 0.464 | 0.444 |
I, (upper assy.) slugft® | 0.253 | 0.233 |
I. (upper assy.) slugft? | 0.448 | 0.448
I, (steady state) slugft® | 0.516 | 0.487
I, (steady state) slugft® | 0.374 0.345
I. (steady state) slugft? | 0.518 | 0.517

Table 2: Test rig dimensions for Runs 3 and 4

Run 3 | Run 4 |

spin rate 2% 10.5 10.5

M, slug 0.0354 | 0.0354
L feet 0.1625 | 0.1625
R feet 0.833 | 0.833
CG feet -0.4484 | -0.4484
M,, (dry) slug 0.5701 | 0.5701
I. (upper assy.) slugft? | 0.200 | 0.200
I, (upper assy.) slugft> | 0.300 | 0.290
I. (upper assy.) slugft? | 0.320 | 0.320
I, (steady state) slugft? | 0.219 | 0.219
I, (steady state) slugft* | 0.388 | 0.378
I. (steady state) slugft? | 0.389 0.389
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APPENDIX C. A Finite Element/Lagrangian Formulation Dynamic
Motion Prediction for a Flexible Satellite Simulator with Both Rigid and
Elastic Bodies
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\BSTRACT

| the present paper a systematic procedure has been conducted
1 derive dynarmic squations by using Lagrange's formula for a
ulti- body system involving bath rigid bodies and etastic mem-
irs. Finite element analysis with a direct stiffness mecthod has
ren employed to model the flexible subsystems. Nonlinear cou-
ing terms between rigid body gross motion and elastic deflec.
ons are completely taken into account. Boch the parameters
om rigid body motion and the components of elastic displace-
ents are considered as unknown degrees of {reedom of the entire
'stem. L he assumption o specified gross motion is no loager
»cessary in the derivation and the resuitant differencial equa-
ons are highly nonlinear. Equations of motion for each indi-
dual subsystem are formulaced associated with a moving frame
stead of a traditional inertial coordinate system and are assem-
ed by means oi a compatibility matrix. The method is primarily
rveloped for forward dynamuics and it is also applicable in inverse
rnamics.

NTRODUCTION

lexibie modeling has been an attractive but difficult topic for a
ng time. Severely restricted by the lag of computer speed (n the
wly years and the complexity of mathematical formulacion, tra-
tional designs in robots. mechanisms. etc. have been limited in
1e realm of rigid body system. However, the increasing demands
¢ higher operating speeds result in a situation thac lightweight
ructures have to be used. An undesired by-product. the effect
" flexibility. is now recognized as a critical issue. [t becomes
apossible to implement time-consuming aumerical integration
1ithout solid support of sophisticated modern computers with
igh processing speed.

The past decade has seen significant advances in dynamic anal-
iis for non-rigid body systems with elastic links. Extensive work
s been conducted in dealing with flexible modeling. Most inves-
gators employ a common approach that allows elastic deflections
) be superimposed on gross(nomiaal) rigid body motioa due to
te nature of a specific prdblem. A drawback of that method

that the rigid body motion must be specified. [t is, however,
ot aiways true that rigid body motion can be predefined. espe-
ally in some environments requiring that the motion of a system
e predicted. Additionally there are those areas where the fu-
1ce between gross motion and elastic deflections are sensitive in
nalysing syscem scability.

The purpose of this paper. therefors. is to develop a general
1odeling technique to conduct a systematic procedure for estab-

lishing dynamic equations of a Aexible system by roasidering all
the degrees of {reedom of the system. rigid or elastic. as general-
ized coocdinaces. [n addition. the procedure in formulation must
be optimized and simplified so as to accommodate the needs in
aurerical analysis and computer programming.

PREVIOUS WORK '

Flexible structure modeling, inciuding the effects of eiastic de-
flections and roctations, has been given considerable effort by en-
gineers and researchers in the fields of robotics and mechanisms.
A Rnicte element method has been chosen over a modal expan-
sion analysis to discretize the continuous systems due. in a iarge
measure, to the fact that eigeavalues are not required to solve tor
the response of the system. An analytical {ormulation. based vn
energy methods. is usuaily applied associated with the finuce 2le-
ment analysis{FEA) to develop dynamic equations of the system.

The first to exploic the advantagesof the FEA with Lagrangian
mechanics were Sunada and Dubowsky (1] {2]. Their modgei in-
corporated a Denavit-Hartenburg represencationot the kinematic
rigid body transiormacion excluding kinematic coupung. The de-
grees of freedom of the discretized system were reduced by means
of Component Mode Synchesis{(CV(S). The equations of all links
were assembled using a Compatibility Matrix routine. (n cheir
ilustrative examples. a set of first order equacions was soived
numerically for a special case in which the mechanism’s nominai
speeds and acceleracions are much smailer than the component
elastic coordinace velocities and accelerations. [n their lacer ax-
tended work. the assembliy of dynamicequations was performed in
symbolic form due to the special form of matrix terms. The final
system equations were soived using a Newmark-Beta incegration
algorichm. Their approach is applicable for these problems where
nominal rigid body motion is specified by kinematic constraints.

Early works by Naganathan and Soni(3}{4]{5}{6](7] developed a
fully nonlinear madel employing a kinematic representation with
rigid link based reference. The three-dimensional modei was con~
scructed by accounting for axial. torsional, and lateral deforma~
tions. Galerkin method was used with linear shape functions
to represent the elasticity of the links. Link level mactrices were
transformed by time-varying compatibility matrices and cascaded
into global macrices. Once again. the rigid body gross motion was
specified at the revolute joints due to the nature of these prob-
lems. The element matrices then became conscanc at every time
step in the numerical solutions.

(n the work accomplished by Sadler and Yang (3] [9) {10]. a
total mechanism displacement was defined as a combinacion of
the large rigid body gross mocion and small elastic deformations.
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Their method was applied both to planar multi-link mechanisms
and to spatial robot manipulators. The effects of Ravleigh damp-
ing was introduced. [n the mechanism applications. the authors
claimed that their methud can be employed both in the forward
and inverse dynamics unrier conditions of either specified input
foceing functions or motion of the crank in a four-bar linkage.
A sperial treacment must be made to relacte the link orientation
angle to the total unknuwn displacement. This can be done for
some mechanisms with one rigid body degree of [reedom({DQF).

More recently. Nagarajan and Turcic {11] (12] developed a new
approach to derive squations of motign for elastic mechanism
systermms. Both the rigid body and the elastic degrees of freedom
were cnasidered as generalized coocrdinates in their derivation.
The equations were first formulated based on eiment level coor-
dinate system in which elastic nodal displacements are measured.
These equations were then transformed to a reference coordinate
system to ensure compatibility of the displacemenc. velocity. and
acceleraction of the degrees of {reedom that are common to two
or more links during the assembly of the equations of motion.
Due to generality in their work. the equations. both on elemenc
and system levels. are complicated and the transformation {rom
=lement level to sysiem level takes a Zreat amount of effort which
i3 necessary for their approach.

A literature survey of flexible models was completed by
Cleghorn {13]. [t was observed that the most effective model
is one which incorporates Lagrange’s equacion with the finite »i-
ement method. This produces a generalized element for easy
appiication to flexible systems.

METHODOLOGY

[n this section. a systematic procedure will be devoloped. Since
the systerns under consideration in this paper involve both rigid
and elastic structures. derivations of motion equations will be all
carried out. Lagrangian approach is selected to coaduct system
dynamics: finite element analysis with a direct stiffness method
is to be empioyed to discretize elastic members and to determine
their DOF and structural stifiness matrix in the pocential en-
ergy term. For each individual body, Lagrangian equation can be
expressed as

4 (9!\'5, ) _ 3KE.__ 3PE,
4t J(qn‘lr '3{QI}r 5(’%)‘—

where A'E, and PE, are the:*? elastic member kinetic energy and
potential energy respectively, {Q,} are those generalized forces
aoc¢ derivable from a potential function. and {q;} is a local vector
of the generalized coordinaces.

For a rigid substructure. the corresponding kinetic and poten-
tial eriergies are of the following formas,

= {Q.} (n

. 1 1 7
f\E\ = ‘z‘mivm . v:\ + 3'36 - rl Dy
PE, = gravitational potential energy (2)

where m, is the body mass. Vc. is a velocity vector at the mass

center. J, is an angular velocity vector. and [; is an inertial dyadic
about the mass center. The potential energy term is due to con-
servative force fields and only gravity is involved usually.

For an elastic substructure. both the kinetic and potential en-
ergy terms are different from those of a rigid substructure. They
can be written as

A

. 1

KE: '—':Z-Z/DM'V-;"?&G“’
gmi 9

PE; = %{q.-}r[k,,]{q.'} + gravitational potential energy  (3)

where g scands for grids or nodes , .V, is the total number of the
elemencs. [, is the length of each element, o; and A, are the mass

density and cross section area of each element respectivelv. and
‘7.9 is a generic velocity vector in eiement 7. As shown above.
potential energy consists of two terms. The first one is due to the
structure elastic deflection and is named the elastic straia energy.
The second nane is due to the structure eievation in the Reld of
gravity both in a macro rigid body motion and in a mucro elasuc
vibration. After differentiating both the kinetic and potential
energy terms and substituting them into Eq. 1. one can ohtain
the following matrix dynamic equations in the form of sernnd
order nonlinear ordinary differential equations with time-vacying
coefficient matrices for each separate substructure.
(maal{a} + e (20d0)] + [ndd) {40} = (ke (2] {au}

= {flq )} (i =0---. N) P4
where. .V is the total number of the subsystems. {m,] is a mass
matnix. (c.,} is a damping matrix due to the Coriofis and ~2ntrifu-
yal accelerations. {c.,] is a viscous damping matrix which is not
derivable analytically. (,] is a stiffness macrix including the coa-
ventional structure stifiness. and {/,} is a force vector involving
the external active nonconservative forces.

With a set of dynamic equations for each substructure 1n the
form of Eq. 4. one must assemble them tngether to form a sec of
equations at a global level for the entire system. One must also
define a global vector of the generalized coordinates 17} which
is chosen from each local vector of the generalized coordinates
{7} such that every coordinate in {q} must be independent of
each other{though some coordinates in the different vectors (7,
may be overlapped). A relationship between the globai vector
and each local vector of the generalized coordinates can then be
determined from :

{a:.} = [@.}{q} i5)

where [®,] is a compatibility matrix in which each elemenc is. in
general. a function of time. By means of virtual work principie.
the system equations at global level can finaily be sec¢ up as

(MI{q} + ((Cc] + (e} {4} = (A]{q} = {F} (R
FINITE ELEMENT ANALYSIS (FEA)

Each elastic substructure will be modelled by using a predefinea
beam element. [n order to reduce the eletnent degrees of fresdom
without major loss in beam fexibility. two transverse detections
and two rotations are allowed for each node which has in generai
six elastic degrees of freedom. [n addition. the {odlowing condi-
tions are assumed.
¢ Elementary beam theory applies and
elastic flexure obeys Hook's Law.
o Each beam undergoes two different bendings in two
planes and is considered rigid longitudinally.
e Two orthogonal deflections are not related to
each other and are therefore uncoupled.
Following a coaventional direct stiffness method {14]. a displace-
ment function with the form of a polynomual functica 1s pre-
assumed first with knowledge of the external loadings. The
boundary conditions are then apptied followed by the direct appii-
cation of the strain/stress relationships with the sign conventions
of the bending moments and shear forces.

Displacement Function

From the classic elasticity theory [15], a function of static trans-
verse deflection for a cantilever beam can be determined depend-
ing on external loading acting on the beam. With no distributed
loading, the highest order of the polynomuial function is o order
three. Then.

y = ag +ayz +a3z’ + a3z’ ("
where a;(i = 0.1.2.3) are the constant coefficients. r and y are
the corresponding elastic substructure axial and lateral coordi-
nates. The above equation will be empioyed as a displacement
function for each beam element.
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Boundary Conditions

Four boundary conciitions {of mach element are proposed as fol-
lows: :

s =0 .etlection=1{, and slope=o,

s =1 leHection={y and slope=o,
where s is an »lement coardinate alligned with center line of an
undeformed beam. :{, anel 2,{: = L. 2) are the transverse displace-
ments and rotacions at the cocresponding nodes, respectively, and
{is the length of the »isment. Applying above {our boundary con-
ditions to Eq. T. it van be (demonstrated that the final displace-
ment functions in matrix torm are of the fotlowing expressions.

A= (OTY](s)
= I
wis) = (4}7(2Z){s}
= (}T12]7 (4}
and
{s} = {l s 82 s’}r
{4} = {4y, o0 41: 01y {2y 92 42 °2y}r {3)

where {d} are the generalized coordinates for each beam element.
{3} is a generalized function vector. [¥'] and (2] are constant ma-
trices(see Appendix A). and {s}T[Y]T and {3} 7(2]T are conven-
tional shape functions for each planar bending.

St Stiffness Matri

For small elastic deflection. the bending moments and shear
forces. in the case of plane £-y for instance. are found to be
3%y
E I:;F
3y
El, a—,_)- (9)
where £ is Young's modulus and /; is the principal moment of
inertia about the : axis. According to Eq. 3, an element nodal
force vector is correspondingly defined as

m(s)

Viis)

(f} = ‘ily mi: fie Myy f)y ma: fa. m?y}r (10)

Applying four force boundary conditions for each node in Eq. 9
followed by comparing the following form

{1} = [k, }{d}. (11)

a final expression of the structure stiffness matrix can be obtained
and formulated as

(k,] = _J’.(c,(p,]"[kl][ﬁd+Cy(ﬂ2]T[‘=zl(ﬂ'z]) (12)

where [k,] is a symmetric matrix. ! is the length of an element,
[ is an average value of [y and [;, Cy and C, are two constant
ratios of [, and [, to [ respectively, [01] and (07](see Appendix
A) are two constant matrices with either unity elements or zero
elements. and [k, ] and (k3] are the bending stiffness matrices for
the corresponding planes.

DERIVATION OF DYNAMIC EQUATIONS AT LO-
CAL LEVEL

As illustrated in Fig. 1. the coordinate system (ig, jo, ko) is &
floating(moving) frame attached to the moving system, and set
(;..}..l;.) is a reference frame for an arbitrary beam 1. ﬁ. is a
rigid body position vector. which describes the rigid body mo-
tion of the system. 75,y is a local position vector measured in
the reference frame for an arbitrary point P’ in element g after
deflection. which is considered as a position vector due to elastic
deformation. F,, is an absolute position vector of the point P’

“agm

Figure 1: Elastic Deflection of A Generic Flexible Beam

relative to the moving frame (5. jo. fco ). which combines the rigid
body motion and elastic vibration.

Position and Velocity Vectors

A position vector describing point P’ can be found as

Fig = &, + 0
{éo}T({R} + (Taul{org}) (13

where {eo} = { 19 Jo ko }T. a unit direction vector. {R,}
and {p,g} are the rigid and elascic position vectors. and (To. is a
transformation matrix between two frames mentioned above. A
corresponding matrix equation formulated in the moving irame
takes the following form.

{rl9}= {RI}“'[TOlHch} {14

Differentiating the above equation gives a velocity equation which
can be written as

{Fig} = IR} +[Tod{oig}) + {R:}
+ [Tod{2g} + [Ta}{peg} (13)

where {7,4} denotes 4{r.,g}/dt. {R.}. (19}. and iTa\| are the
time rates of the corresponding vectors and the transformation
matrix. and (Q?](see Appendix B) is a skew matrix derived from
a rigid body system angular velocity {f2} which can be expressed

u .

{Q} = (V] (N} (16}
where {A} are the time rates of the rigid body generalized coor-
dinates. and [V] is a time-varying coefficient matrix which can
be partitioned! as [ ¥, N, N, T

For a case with no relative motion between the moving and ref-
erence frames. Eq. 15 can be written in the following form in detail
after substituting Eqs. 16 and 8 into Eq. 15 followed by rearrange-
ment and a new definition for the i*® beam generalized coordi-
nates {q,} composed of both rigid body generalized coordinates
{\} and elastic generalized coordinates {d;}.{d2}..... {dm}{see
Eq. 8).

(R'J + TJIP«Q:)&'
(Ra +Tllp|yn)&‘
{Riz + Ta10ugs )Y, -

(R|2 + Tnﬂuga)LYJ
(Ra + TJIP-,:)L![
(Rn + THP-")LY..:

TYTT+ ZTTa)
rqun*'z‘rTn) (©gal{d:} +

éTn + Z‘FTJJ)

' A matrix is also denoted by a letter with underline. i.e.. M.

{’;ig} =

[eu\]{q.l} +
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11O, a(Tll + Ty Z,)Y, -
1P ut (Tl + s 2 )3y, -

T8 l(Tull = TnZ)e, -

{0}, =T 218N,

‘r'lL "T'L)&.} (OU\I{”;} (t¥)
(TeY, = TeZ)sN, )

where R.,(J = L. 2) are the rompunentsof the cigid body pesition
vector { R, }. vigy = 1y = 1) +19. T\, are che elements in the 3 x 3
transformation matrix {T9,]. and

(n}T = (AT 4 Tal e 4D )
®al = (4, ol
(Oa = (0 4L 0]
(= [Bailad
{4y = (Oyal{n} (18)

where {@,,] and [©,,4] are types of compacibility macrices. (7.}
are the generaiized coordinates. [[\] and [/4] are the 3 x 3 and
3 x 3 urut matcrices respectively, and Q's are the zero macrices.

Elastic Beam Kinetic Energy

{t can be demonstraced chat premuitipling the velocity vector(see
Eq. L7) by its transpose vactor will cesule in a velocity square term
as shown below.

-~

R! = A2
e = (T ((e.m(.vv[ -RiR RI+RA]
-Ri Ry ~RaRs
Symmetry

) } (Vi{@.] +
R? + R2

[G-NIT(E.. + .au *‘ﬂ;;)[e-qal +
l.rgrq,;_(-a_n * i)a)g-qai.
=17 2948122044,
‘l.r Q.I;aﬁ.u.@_-qai.

| -aTOf B8, |
:.‘q%_(-a-}x +853)0,044, |
1) Dgafa3Dgad, !

roa
‘Z,‘.Q.qaﬁ.n@-ni.

770008322048, Wienl +

22068 + 2421048,

@AITVIT [ L :ﬁ” ]te i+
L <Vl *7F 194
x:‘.D-u

(0" (05 - 05, 05, - 21, 05 - 25

Z(D.u + Qu 14944,
“(.Qu + .Qn)@.qdj_.
(L3 +L251)Q. 008,
| ]
I2ADy, +Q}J)Qﬂgdg§ '
| ~tLas + L5320 4a8, |

Symmetry

204y + D22)Qu044,

aTQ%, (B, - B3;)
OalTVIT | oF ol (8, - g,:a
Lrgnz;c(ﬁél -8432)

(Vlf@ial + (@alT (VT

] Vi@:.] +

(i +

[9-94]r [(.Bin - .azs)fiyal, (Eu - 8,8, jal,
(8, ‘;\z)@..q.;i‘ I AYI{(Z AN ) (i} (191

where (@1, [@uga). {B))(i.) = 1.2.3).and [Dy](1.7 = 1. 2.3) are
all constant matrices(see Appendix A). Substicuting the above
equation into Eq. 3 followed by rearrangement yvields a compact
equation of the kinetic energy for an elastic beam.

KE, = {1} (m] {4} o
where {m,] is a symmetric m;u matnx having the following form.
(md = [m]+(@n] TvT
(Gul+ (3] Bua1] + [2uay]) (VO] =

1Tel

@alTVIT | (Gal+ | 17E] +
TE!

((Gal” + [E3, Eag, E51]) VIGni  (20)

where [m,.] and [G.|] are the constant symmetric square macci-
ces{see Appendix A). (B3] and (Eaj{a.d = 1.2,3) ace the con-
stant nonsymnmetric square matrices, { D3,} (a.d = 1.2.3) are
the constant vectors. and (G,3] is a conscant rectangular macrix.

Elastic Beam Potential Energy

The tocal potential enecgy is a summation of the body force po-
tential energy and the elasuc strain energy. The former s the
negative work done by gravity. The latter can be wricten as

Ny
Un =33 @ (@l tesil@upal) (1 (22)
931

where {k,,o] is a structural stiffness matnx. developed in the pre-
vious section. for 7°® element of beam . According to Egs. 12
and 14. it can be shown that the total potential energy takes the
following form as

PE. = z(a) lhul{a} = Vo = ()0} 3

where the term V; and vector {A,} are the functions of the gen-
eralized coordinates {q,}. The first term represents the elasuc
strain energy. The last two terms. on the other hand. combine
the body force potential energy in which the term V' is due to the
rigid body mocion while the term {A,}7 (4.} is due to the elasuc
deflections.

Local Level Dyoamic Equations

Substituting Eqs. 20 and 22 into Lagrangian formuia. Eq. 1. will
yield a set of dynamic equations in matrix form for the t*N elastic
bearn.

(mil{@i} +(eil{di} + l{ai} = (£} (24)
where {m,] is a mass matrix. [ci] is a damping matrix which re-
sultes from Coriolis and centrifugal acceterations, (k;] is a stiffness
matrix accounting for bath the scructural stiffness due to elasuc
deflections and the coupling term between rigid body motion and
elastic deformation. and {/,} is a generalized force vector. In
general. the mass and stiffness matrices and. the force vector are
the functions of generalized coordinaces {¢;} while the damping
macerix is a function of both {¢} and {gi}. Furthermoce. these:
coefficient matrices and force vectors can be written as

19( (madT{¢} )

] = (il - PR TPy
[k') = [knl‘f‘(-"l
(!.) = {Icl}"'{/ﬂ}"{f‘l)‘{!li} {29)
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where [m,] is the time rate of the mass matrix [m,]. {f.,} is a
force vector due to the external loadings. {f..} is a connecting
force vector{ which would-vamsh automatically in the matrix as-
sembly from the local level to the global level with the condition of
the selection of the independent global generalized conordinatesi.
and the matnix [J,] and the vectors {f,1} and (f.2] are all de-
vived from the potential energy term as shown in Appendix A.
The damping matrix 7.} consists of a Coriolis term and a cen-
trifugal term. [he former 1s a symmetric matrix. The latteris a
nonsymmetric matrix and is derived in Appendix C.

Derivation of motion »quations for rigid members in a system
can also he done by following the procedlrres demonstrated in
the previous sections. First. one should identify a position vec-
tor. like the nue shown 1n Eq. 14. which will account for elastic
displacements of the Hexible substructures preceding the rigid
hody. Serond. a velocity sqaure term resulted from differentiat-
ing the position vector could be found. Third. it is necessary to
nbtain an inertial dvadic of the rigid body about its mass center
and an angular velocity vector including the rigid body angular
velocity and the elastic rotation rates influenced by deflections.
The final step is to find rigid body kinetic and potential ener-
gies as shown in Eq. 2 followed by substituting the results into
Lagrange's ecquation.

GLOBAL LEVEL DYNAMIC EQUATIONS

[n the previous sections. it has been demonstrated that each of
the subsystem has a different set of dynamic equations expressed
at the local level. Assembling these subsystem equations at the
Zlobal levet will constitute the system dynamuc equations. An as-
sembly routine must be found so as that the coefficient matrices
and the generalized force vectors for each substructure are com-
patible. Geometric constrains between the subsystems must be
applied. One must also define a set of global generalized coordi-
nates which are independent of each other.

Compatibility Matrix

A matrix which linearly relates the local coordinates with the
global coordinates is called the compatibility matrix. For a sys-
tem with an independent set of global generalized coordinates {q}
with n components. these local coordinates {g,} with m elemencs
for the *® subsystem can be expressed as

{7-} = [Qll{q} (26)
where the compatibility matrix (9,] is an m x n matrix and is

in general a time-varying functon of the rigid body generalized
coordinates.

Assembly of Subsystem Equations

Differentiating Eq. 26 with respect to time and applying the re-
sults into subsystem equation, Eq. 24, will result in the following
system dynamic equations.

(MI{4§} + [CH{d} + [KI{q} = (F} (27)

where the global mass. damping, and stiffiness matrices and the
global generalized force vector are formulated as follows:

N
(M= (@l (@)
=l

hi

(€= (@7l + 2(e:| T [m.J(&41])

v

(K1= Y ((0TIRI(@] + (@17 [ell(a] + (8,17 [m,](84))

{F}:Z{‘b.]r{f.‘[ raXy

=1
where V is the total numberof the subsystems. Structural and/..c
Huid viscous damping matrices can be added in each i-,; matrix.
and the coanecting force terms in each {f,} vector will vanish
automatically during the process of matrix assembly.

CONCLUSIONS

A systematic mathematical model predicting the dynamic mo-
tion for a muiti-body system including both rigid and elasti:
substructures has been fully developed in this paper. A con-
ventional finite element analysis with a direct stiffness methn«l
is used to discretize the elastic continuous subsystems. A third
order polynomial function is adopted in the shape function in ur-
der to exclude the effects of longitudinal displacement and beam
twisting which are usually of higher order magnitudes compared
with other deformations in the most flexibie systems. The La-
grangian equation is empiloyed. with both the rigid body Aegrees
of freedom and the elastic degrees of freedom treated as generai-
ized coordinates of the entire system. The elastic deformations of
sach element are measured at a substructure level. which i1s based
on a corresponding undeformed body. so that they are compacibie
at the local level. Kinetic energy and potential energy are formu-
lated for both the elastic and rigid members. Nonlinear coupiling
terms due to Coriolis motion are completely derived and are =x-
plicitly expressed in a matrix form.

The final set of system dynamic equations of motion is =x-
pressed in a closed form showing high nonlinearity with tume.
varying coefficient matrices and generalized force terms. Numer-
ical technique which can solve the equations with muxed rnigid
and elastic variables is under investigation. The procedure devei-
oped in this paper is applicable to the flexible system with planar
motion. as well as spatial motion.
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where o; is the mase density, A; is the cross section area of beam
i. m; is the total beam mass, L, is the tocal length of the beam.
G is gravity, (Tco| is a rotational transformacion matrix from che
inertial frame (é1.47,é7) to the moving [rame (iq. Jo. ko). and
{kyep] is & structure stiffness matrix of the g** element in beam :.
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B: Skew Matrix and Matrix Properties

For a given vector. (1. a corresponding skew matrix {(] is defined

L)
|- 9 =41, 0,
(@R s, ) I
‘_ -1 i) 0

where Q,{1 = 1. 2.3) ace the components nf the vector (1.
If {1} is a vectoe with a-dimeasion. and a scalar 2 and a vector
{z} with m-dimension ace the functons of ). the following

matrnx derivatives are then definerd. as -
.'lc
E S Vi
)(.} Ja,
afg}t "[ PN ]“‘""“"-J—l----.m)

where {19/.37,} i3 an n-dimensional vector. and {?2,/)7,] is an
n X m matrix where ¢ determinesa row and ; determunes a column
for cthe matrix. The following properties of the macrix partial
derivatives are derived.
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where[B]=[ {61} - {a} ]T

where {2}. {5}. 01, 2. and [B] are all the functions of {3}. (C}
is a constant macrix. and {5, }{i = L. --.n) are the submatrices

in (B].

C: Derivation of +3{{m,[T (4,})/3{2,}T

Rinetic energy for the i*® beam is

KE. = <{a}Timl{a)
= KE.+KEy +2KEn (29)
where
KEe = 3{0)Ttmed) (30)
KEw = {4)7(@ulTVITUG] + sl +(TD
(Vi@ial{4i} , {3t
KEa = (@ @ulfVIT(Gal + (D&} 32)
where

(f = {2783 |

Partial differentiating Eq. 29 with respect to vector {q;} gives
I{aq,}! 2 )T !
aqug 3K°E.| +2 '?'\.EQQ

TP TR TPy S

where the first term vanishes because [m,.| i3 a uonstant macrix.
The second term in the above squation :an he written as

_ LaUNNe i) e s

Habt 7 37 gt SUA A
RSN

l, ’(',)‘- {t{Gui =1 +(T])

[-"l[etll{ll}}[-\.![GIA]{'L) (:34)

ANVIOLl (D 3 3 .
= = — Q! ('A;
TN LERTPRY ([?‘ ][ e )

Nt ANT anT
[——e | —=2=20,,1 —==0,1 133)

where

e, 1 2,
TN L IO L I TP T

and

( }‘- t([cﬂ.] +l"| "T' [Vl[eu\h'hf} =

i[[vl[(?.;y'l-}) ({le‘l‘ L’}T T 1') =
Mz~ L)

J (ix - I—()
v,y ——N0 g
[ d(?l}r A e A

13m0

(!4 +L) ,

where
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(1l = (L L L]
Substitucing Eq. 35 and Eq. 36 into £q. 34 gives

. r
IRE, _ [3\! IV

- -0 —=i-3
3{q.)* Ha ) 2L ST el

i{q.} 9. ]([G.d*i!i"‘(ﬂ)

3y, + L)
(Vi{@irl{a} + 2[#&;?

(33 +Ti) NO NO.Li. (34 a-‘z: .) Vo No.i
I}t Haip!
(Nlleul{%}
= (1)+(2) (37)
where (1) and (2) are used for identification. The second term in
the above equation can be rewricten in a pattern as shown below.
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sSubstituting £q. 39 into Eq 33 gives
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Substituting Eq. 41 and Eq. 10 into Eq. 37 gives
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The last term in Eq. 33 is
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)I\ E.2
a{q.}f
A(vIO.]{a D)
'9(%)1.
(ETq, £T4, ET4 ] (VI@nldn) (48)

Substituting £q. 42 and Eq. 45 into Eq. 33 yieids the final result.
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ABSTRACT

[a the present paper a genecai systematic modeling procedure has
been coaducted in deriviag dvnamic equations of motion using La-
gtange's approach for a spatiai multibody structural system involv-
ing ngd bodies and efastic members. Both the nqid body degrees
of freedom and the elastic degrees of {reedom are consideced as un-
known generalized coordinates of the entire syscem in order to re-
fect che nature of mucuaily coupled agid body anc ~lastic otionas.
The assumption of specified ngid body gross ridton 13 1o longer
necessaty in the equation derivation and the cesuiing dierential
equacions ate highly nonlinear. Finite element analyuist FEA) with
direct stiffness method has been emploved to mod>! the Aexidle sub-
structures. Nonlinear coupling terms betweea the ayid dody and
elastic motions are fully derived and are explicitly expressed in ma-
tnix form. The equations of motion of each individuadi sudsvstem are
formulated based on a moving (rame tnstead of 2 tradisicral inet-
tial frame. These local level squations of motion are aasembled to
obtain the system equations with the implementation of geometnc
Soundaty conditions by means of a compaubility metnx.

INTRODUCTION

Flexable dynamic modeling has been an attractive but difficuss topec
fo a long time. Severely resincted by the lag of compuser processing
speed in the early years and the complexity of macthematuica: {ormula-
uon, traditional dengns in- cobots, mechanisms, and other reiatvely
flexable structures have beea limited to the reaim of rigid body dy-
namics. However, increasing demaads foc higher operating speeds
and better performance result in a situation that the ligot waght
structuces ace objectively desired. A by-product of the dexibility ef-
fect 13 now recognised as a cntical issue. [t becomes imposmble to
implement ime-consuming aumencai integration without solid sup-
port of sophisticated modern computers with high processiag speed
capability.

The past decade has seen significant sdvances in dynamic apalysis
for Rexible muitibody systems. Extensive work. analytically and ex-
perimencally, has beea coaducted in dealing with fexible modeling.
Most investigators however employ a common approach in which the
elastic defocmations are superimposed on the rigid body gross mo-
tion dae to the nature of their specific problems. The application
of that method is severely limited due to the (act of requirement of
predefined rigid body motion. [t is thecefore very desizable to nves-

igate a aew approach ia which ail the degrees of freedom(DOF) of
a system, elastic as well as rigid, ace treated as unkoown general-

a1

\zed coordinates. This enables analvsis of sicuations whece the rigud
body motion needs to be predicted and the relationship between two
motions effects the system stabilicy.

The pucpose of this paper is to develoo a general modeiing tech-
aique to coaduct such a svstematic procedure for estadlisning dy-
aamic motion equations of a Jesble svstem with mutuailv depen-
dent tigid body and elastic motions. [n addiuon. the formuiation
procedurse is to be opumized and sumplified s0 a3 to accommodate
the needs of numencal analysis and computer programmung.

PREVIOUS WORK REVIEW

The first 2o exploit the advantages of the FEA wich Lagrangian
mechanics were Sunada and Dubowskv 12\, Their modei incoc-
porated a Denavic-Hartenburg tepresentation of the kinemauc ngd
body transformation excluding kinematic coupling. The degrees of
freedom of :he discretized svstem wete reduced by means of Com-
ponent Mode Svnthesis(CMS). The squations of mouon of ail linxs
were assemoied using a Compatibility Matnx rouuge. In their tilus-
trative examples. a set of first order equations was solved numencally
for & special case n which the mechaaism's nomunal speeds and ac-
ceierations are much smaller than the component eiastic coordinate
veiocities and accelerations. [ thewe later extended work. the as-
semoly of dynamic equations was petformed in symboiic form due to
the special form of matrix terms. The final system equations were
soived using a Newmack-Beta integration algonthm. Thewr approaci
is applicable for these problems where aomunal ngid body motion s
specified by kinemacic conscraincs.

Early works by Naganathan and Somi3![4]{$i{61i7] developed a fully
aonlinear model emploving a kinematic repceseatation with ngd liak
based reference. The three-dimensional model was conssructed by
accounting for axal, torsional, and lateral deformations. Galerkin
method was used with linear shape functions to tepresent the elastic-
ity of the linke. Link level matrrces were transformed by time-vacying
compatibility matrices and cascaded into global matrices. The agid
body gross motion was specified at the revolute joiats, and, subse
quently, the element matrices became constant at each time step in
the numerical integration. .

Presented by Simo and Vu-Quoci8ii9l, a different peoblem stose in
simulating dynamic response of a flexible plane beam subject to lacge
overall motioas. Two orthogoasl coordinates, measured inan inertial
frame, were defined to account foc the large overall rigid body mo-
ticn and small elasuc deformatioa, Haoulton's dynamics associated
with Galerkin spaual discrenzation were empioved in the focmula-




tien. in which the use of finite strain rod theueies capable uf treating
finite rotations was esseatial. The inhetent nonlinear character of
the problem was traasferred to the stifiness part of the equations of
motion, which resulted in the possibie numerical implementation by
means of any commercial finite element codes being able 10 analyse
noalinear structural dynamics.

In the work accomplished by Sadler and Yang{10!i11] (12}, a to-
tal mechanism displacement was defined to reflect the large rigid
body gross motion and small elastic deformations in the dynamic
modeling. Example problems were demonstrated in two different
categories: planar multi-link mechanisms and spatial robot manip-
ulators. The effects of Ravleigh damping was intcoduced. [n the
mechanism applications. the authors claimed that the method could
be emploved in the forward. as well as the inverse dynamic analyses
if either the input forcing functions or the crank motion are specified.
The link orientation angie must be related to the total unknown dis-
placement in the formulation. which is possible for the mechanisms
with one rigid body degree of freedom.

More recently. Nagarajan and Turcic,13}114; developed a new ap-
proach to derive equations of motion ior elastic mechanism systems.
Both the rigid body and the elastic degrees of freedom were consid-
ered as generalized coordinates in the derivation. The equations were
first forrulated based on element level coordinate svstem 1n which
elastic nodal displacements are measured. The equations were then
transformed to a reference coordinate system to ensure compatibil-
ity of the displacement. velocity, and acceleration of the degrees of
{reedom tnac are common to two or more links dunng the assembly
of the equations of motion. Atternpted to be general in their work.
the equations. at element and system levels, are complicated and
the transformation from element level to system level takes a great
amount of effort while it is essential for the approach.

A literature survey of flexible modeis was completed by Cleghorn
13:. It was observed that the most effective model is one whica
incarporates Lagrange's equation with the finite eiement method.
This produces a generalized eiement for easy application 1o dexible
systems.

CURRENT APPROACH

In the current pape:. a method combiming Lagrangian dvnamics with
finite element analysis is developed i1n the modeling oi dvnamic re-
sponse of multivodv flexible structures. Lagrange's approach is se-
lected to conduct svsiem dynamic equalions: finite element analy-
sis with direct stfiness method 1s emploved 1o discretize the elasuc
members in the system and to determine elastic degrees of {reedom
and the structural stiffness matrix which is required in finding elas-
tic stcain enecrgy. Each flexible beam is assumed as a slender beam
which 15 therefore 10 be modeled by beam element. The generalized
coordinates of an entire system reflect both the parameters from
the rigid body gross motion and the components of elastic displace-
ments. The nonlinear coupling terms in all the coefficient matrices
and the generalized force vectors are completely defined and formu-
lated mathematically in detail. For an individual body, Lagrangian
equation in matrix form can be expressed as

d (axz.) _OKE _0PE _ |
#\3q ) "3 " - % (n

where K'E, and PE, are the kinetic and potential energies of the
body, Q, are the nonconservative forces, and q, ate the local gener-
alited coordinates which reflect the degrees of {reedom of the body.
A general expression of kinetic energy of an elastic beam modeled
by finite elernent can be written as

R B L
KE = Ez/o P|A1V|"V|'d" (2)

=l

412

where .V, is the total aumber of Lhe finite elements. {, is the length of
the ¢** element which is usually the same for all the beam elements.
p and 4, are the mass density and cross sectional area of the beam,
and V., is a generic velocity vector in element 9. The above equation
clearly shows that the velocity squared term plays a major role in
kinetic energy. On the other hand, potential energy, consisting of
body force potential energy as well as the structural straio energy,
can be written as

PE = 347K a0~ %(G) 3)
where the first 1erm is the elasuic strain energy and the second term
is a potential function which accounts for the beam elevation in the
gravity field in the scopes of both the maczo rigid body motion and
the micro elastic vibration. After differentiating the kinetic and po-
tential energy terms and substituting the results into Eq. 1, one can
obtain the equations of motion in matrix form in the following.

(4

where the mass matrix m, is in general a function of the generalized
coordinates q,. the damping matrix ¢,, resulting from the Corioiis
and centr:fugal accelerations, is a function of the generalized coot-
dinates and velocities. the stiffness matnx k,, inciuding the conven-
tional structural stiffness. is a function of q, only. and the generalized
force vector f,. invoiving the external nonconservative forces acting
on the beam. is also a function of q, only.

A set of global generalized coordinates q is defined first. These
cootdinates aze chosen from the local generalized coordinates q, such
that everr coordinate in q must be independent of each other. The
relationship between the giobal and the local generaiized coordinates
is thea determined by the following equation.

m‘(QI)&| - c.(q.. )4, ~- k.(q.)q. = f‘(QI)

(3)

whete @, is a compatibility matrix which is 1n general a function of
time. Differentiating the above equation with respect to time fol-
lowed by the substitutions and the pre-multiplication of ¢, 1n Eq. 4,
one can finally obtain the system equations in the {ollowing form. as

qu=%aq

Mq~-Cq-Kq=F (6)

In the following sections. more detailed procedures and formuiations
ate developed step by step. A demonstrative exampie 1s illustrated
in Part I1 in which the simulation results are venfied by the expen-
mental data.

FINITE ELEMENT ANALYSIS

Each elastic beam is 1o be modeled by using several conventional
predefined beam elements. The maximum degrees of freedom for
each node in an eiement are six. Thev include two orthogonal trans-
verse defiections and two corresponding rotations. one longitudinal
displacement. and one twisting about the element axis. In order to
achieve relatively simple modeling, only the transverse deflections
and rotations are allowed at each node. The contributions of the
other two dispiacements are neglected in most cases(it is referred
1o [16]{17! for a complete modeling). The following conditions are
therefore assumed for each element.

o Elementary beam theory applies and elasiic flexure obeys

Hooke's law.
¢ Each beam undergoes two uncoupied orthogonal deflections and

rotations.
» Longitudinal displacement and axial twisting are neglected.

Following a conventional direct stiffness method(18}, a polynomial
displacement function is preassurned with knowledge of the external
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Figure 1: Sign conventions of nodal dispiacements

loadings. The boundary conditions are applied followed by direct
application of the stzain/ stress relationships with sign conventions of
the beading moments and shear focces. A structural stiffness matrix
is obtained by comparing the relationship between the nodal forces
and the nodal displacements.

Displacement Function

[t is indicated from the classic elasticity theory'19' that a polynomial
function of the static transverse deflection for a cantilever beam can
be determined. depending on the type of external loadings acting
on the beam. With ao distributed loading, the highest order of the
polvnomial functioa is of ocder three, that is

Y= a5 =12 —az} —asz? (N
whete z denotes axial coordinate of the beam, y is the cocrespond-
ing teansverse deflection, and a:{i = 0,1.2.3) are the constaat co-
efficients. The above formula is then emploved as a displacement
function for each beam element.

Geometric Boundary Conditions

As illustraced in Fig. 1. fouc geometric boundary conditions are pro-
posed for each element as follows:

and
and

3 =0 deflection =d;
s =1 deflection = dy;

slope = o,
slope = ¢4

where s is the local axial coordinate in an undeformed element seg-
ment, d, and o,(: = 1,2) ate the transverse deflections and siopes
at the correspoading nodes, tespectively, and { is the leagth of the
element. By applying above four geomettic boundaty coanditioas to
Eq. 7. it can be demoastrated that the final displacement functioas,
in matrix (otm, in each orthogonal plane ace of the following forms.

{8
(9)

where Y and Z are the constant matrices(see Appendix ), v(s) and
w(s) are the displacement functions in the X ~ Y and X ~ Z planes,
respectively, and d and s aze the generalized nodal coordinates of
the edement under consideration and a generalized fuaction vector,
tespectively, which are defined as

v(s) =dTY s=4TYTd
w(s) = 472 s =s"2%d

d
s

{d1yd1sdrsdrydayd2.d2,009 }T
{1992 %)

(10)
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Figure 2: Sign conventions of nodal forces

where d,, and 0,.(i = 1.2) ate the deflections and slopes in the X =Y
plane while d.. and 0,,(: = 1.2) are the deflections and siopes in the
X - Z plane. It is noted that s7Y7 and sTZ7 in Eqs. 4. 9. are the
conventional shape functions of each orthogonal bending.

Structural Stiffness Macrix
For small elastic deflection. the {ormulas of the bending moments
and shear forces ate found to be

G%uls) Y
= V() = 1,

where £ is Youag's modulus. [, is the principle moment of inertia.
and u(s) is a transverse deflection function(either vis) or w(s)). Ac-
carding to £q. 10, a corresponding vector of generalized nodal forces
is defined as

3uls)

M(s) = €I, (1)

£= (f('mltfl:mlvf:ymi:fhmh}r {12)
whete f,(1 = 1.2) ace the nodal forces and moments as shown
in Fig. 2. Refernng to geometric boundary conditions. four {orce
boundary conditions ate accordingly determined as

s =1
s=1

sheae force = f,
shear fotce = f;

bending moment = my;
bending moment = mjy;

Applying these four force boundary conditions foc each orthogonal
bending to £q. 7 and arranging the results in the following standacd
form as

f=k,d (13)

one can find that the structural stiffness matrix takes the {ollowing
expression. as
£r r T

k, = NEN (Cu3i ki = Cy 33 kads) (14)
whete k, is a symmetric stiffness matrix, ! is the leagth of the ele-
ment, [ is the anthmetic average of [, and [;, C, and C. are the
coastaat ratios of [, and [, to [, tespectively, 3, and Jz ace the
constant matrices. and ky and k3 are two stiffness matrices see Ap-
pendix ). The structural stiffness matrix is to be used in formulating
the stractural strain energy which is pact of the potential energy of
& moving elastic beam.

LOCAL LEVEL MOTION EQUATIONS

Ia the present paper emphasis is placed oa studying dynamic re-




Figure 3: Deflection of a generic flexible beam

sponse of sphencal unconstrained structural systems. Fig. 3 showsa
generic finite element in an arbitrary elastic beam in such a structural
system. Two sets of Cartesian coordinates are set up in assisting the
representations of the rigid body motion and elastic deformation.
Set (io. J,. k,} constitutes a floatingtmoving) frame of which the ori-
gin O is located at a spherical umversal joint with three rotations.
Set (1,.),. k). which accommodaces the atbitraty elastic beam, 13 a
reference irame which is relative to the moving frame. Vector &, is a
position vector which indicates the position of the origin of the ref-
erence frame under consideration relative 1o the moving frame. This
vector is considered as a rigid body position vector which describes
the rigid body motion of the elastic beam. Vector 5,y is 2 local poni-
tion vector measured in the reference frame {or an arbitrary point P’
in element ¢ after its deformation. This 5,, vector features both the
rigid body motuion of point P’ relative to the moving frame and the
elastic motion relative to the reference {rame. Vector 7y, measured
in the moving frame. is an absolute position vector which combines
the rigid body and elastic motions of point P’.

Position and Velocity Vectors

Referring to Fig. 3 again, the absolute position vector of point P’
can be found as

Fig =R - by = & (R, = Tan ,y) (13)

where é, = {:,}.E.}r, a unit direction vector of the moving frame,
R, and p,, are the reference and local position vectors in matrix
form, and T, is a 3 x 3 transformation matrix from the moving
frame to the reference {rame, i.e., &, = T,é& where & is a unit
direction vector of the reference frame. A cotresponding position
equation in matrix from formulated in the moving frame {E.},fz.}
takes the following form as

Ty = R, + Tu Py (16)

All the vectors in the {ollowing sections will also be expressed relative
to the same moving frame except where mentioned. Differentiating
Eq. 16 with respect to time gives a velocity formula which can be
written as

g = By + T ug) + Be + Ton pug = Tn 21y (m

where ¢,, denotes dr,,/dt, R., Prgy and T, are the time rates of
the corresponding vectors and the transformation matrix, and £1 is
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a skew-svmmetric matrixisee Appendix ) derived [rom a rigid bodv
system angular veloaity ) which can be expressed as

a7 = A'NT = iTIN, N, N (18)

where disa generalized angular velocity vector containing the time
rates of three rotating angles about the spherical universal joint, and
N is a 3 x 3 time-varying coefficient matrix which can be partitioned
as [N{N;N;:7. The rigid body system angulat velocity I governs
the angular motion of the moving frame &, which is relative to an
inertial frame &,. Positioa vectors R, and p,, can be further written
as

RT = {R, R1 R}’ (19)

Pirgs (9 - 1)‘| -3
Prg = Teg = Tug -(20)
w,g Uiy

where R,,(j = 1.2.3) are three rigid body components of vector R,,
Prgs is a rigid body component of vecior p,,. and v,y and w,y are two
elastic components reflecting two orthogonal defiections as shown
in £qs. §.5. Therefore the time rates of the corresponding position
vectors are found to be

R.=0 (21
,a;‘, = {0 &, wyy} (22)

For the cases with no revolute joint between elastic beams. the last
term in Eq. 17 can be dropped out. A set of generalized coordinates
for the i** elastic beam can be defined in terms of three rotation
angles and generalized nodal displacements in caca element. Thus,

q; = {‘\?dvlyo‘l:dﬂzo!lyddyo:).-dd:‘?dy
o 'duyol’ld!’:ol'y M
A m iy @ n, ~01: 4N, =110 ¥, = 1)y }
= {(Adid;--d]o-dly) (23)
where each d.g(g = 1.2.---.\|) contains eight components as de-

fined in Eq. 10. and X, is the total number of eiements in the **
elastic beam. The relationships between vectors A. d,; and q, are
then established. as

A=0.uq, (24)
dt, = 01" Q. (25)

where O, and @,;4 are types of linear compatibility matrices. A
more compatible expression of the velocity vector can be written
as a function of the time rate of the generalized coordinates q by
substituting Eqs. 8-10 and 18-25 into Eq. 17. Followed by necessary
rearrangement, there results

(R = Ta1pugs N2 = (Raz = Ta1oy, )N
(Ra = T11000)N1 = (Ris = Ts1inge )N
(Ri = Torprge )Nt = (R = Ti1019s )N3

Py = Siq.

sT(YI Ty 2T
- | sT(YT T ~27Tus)
YT + 2Ty

QTO%L (T Y. = T5:Z, 3Ny~

Q.:euq((TuY- -+ T13Z,)sN, -

9 0, (TuY, + T332, )sN, -

“(TnY, -~ T13Z,)sN,)

(T2, ~ T53Z.8Ny) | @01 Qi (28)

-(Tua Y, = TisZ.)sN,)
where Toa(a,.d = 1.2.3) ate the elements of the transformation ma-
trix T,

Qe Q-

— —




Velucity Square Term

The purpose of focmulatng the velocity squace term is to find the
beam kiaetic energy which is defined as

=2Z/ V,, wd"‘w

FE1}

(27)

where .V, is the total number of elements. [, is the length of the g**
element in the ** beam, ¥,  is a velocity vector of an uoizrarv poink
m the elemens. :uumuung pid.ds for dmiy and £ 2 &2 OF &l foc

V.g the above kinetic energy equacion becomes

KE, = -p.A Y‘[

T b ds

sl (28)

where p, aad 4, are the mass deasity and cross sectional area of the
beam, respectively. £3. 23 indicates that fading e velocity squace
term is peioc to Anding the kinetic energy. As shown in Zgs. 10 and
29, the velocity vectoc in £q. 28 is aiso a f{unction of the local axial
coordinace 5. This indicaces that ic is a challeaging task to (ormulate
the velocity squarte term prooerty such that the integration in £q. 28
can be cacried out anaiytically. for sumplicity, £q. 15 is reformuiated
in a symbolic fashion by the following form. as

By = 10,4 - 20 4 - 30 4 (29)
where macrices (1}, 2!, and 3! represent the corr-soonmng matrices
in £q. 26 in the 1ame ocder. Premultipiing the veiocity vectat dy its
transpose vectoc nil result in the veiocity squace t2sm as

i,r,i-,-, =

Q) xo.u u PR L TEi T . (RN SRR YO IR
PRk 1 TR INT T (L X - T

-0l - 3004 (30

3v defining the foliowing terms

TuY. - 132,
Ty Y, - T332,

|
ANE:

SHE

it can be demonstraced that the symbolic matnces (i =
£q. 29 become

1Y, - T12Z. T|
!
!

Ay - rl! Pigs
Ra~-Tn Pigs
R =T pugs I

1.2.3)in

AU=RTN; 2i=d 3=-4d12 (O a)V
where [dl is & skew-symmetric mactix associaced with the @macdix
d(see Appendix ), and [ and @ ace mattix operators defined in

Appendix . Thus,

AT = NTRATN: (2720 =d’d
3a NT0qT Ol @117 d) @ [(@ipe qi) ¥
(T3} = NTRT(A] @ [(Oige qi)i¥

(Tr2) = NTR4: (21703 =

By substituting above expressions into Eq. 10, :2e velocity squace
tarm becomes

d7(d]| @ [(Oige ai)Y

P
B tie ®
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'q."a(-).‘.\N“-l'lq.'-(‘).",‘n wed ‘.,t'i 1% D18 0
~RRT —(RTQA - dR7)319,,i LUNO,,
L@ NT(RA-1710.,¢ i} 2.4 7Td19,,q
-0Lud*RT +d7dl@ (1O .1 YO,
~@7,d7d 9,44, 130
Kinetic Energy

Substitucing Eq. 31 into Eq. 28 vields a moce comopac: farm of the
kinetic energy as

. Lo .
KE = ;q: msq, (32)
where m; is a symmetric mass macrix which is formulated as
m; = m;-0iNT(G, -~ Hy - H3INO,,
~OLNT(G. = Hiy1Oiye
~07,G] - H3INOu (31
where
M = 2 -vG‘,.ﬁ/ 47 ddn®,,
Fi 1%
G, = a.«l.,v’/' RAT &
FE 2N
G: = ad ,V' " Rdds
sm 79
KA “
He = 24 \_. rrfei.q q.')S/ &’rdldl
1wt "
zfl@.,. )
H,; = a.i.v/ (R7di = ouR s R TIO. ¢ qu)
gwt *?
Hy = o4 Z L-rfe-‘u LK / dlrd as 134)
FL 1Y ?
where m,, and G, ace the coastaat svmmetric tatnices. G,; is

a coastaac rectaagulac macnx. H, and H,; ace tae ume-varyving
symmetnc matrices. and H,3 15 2 time-varving cecrangulac macnx.

Potencial Enersz

The tocal poceatial eaeegy of an elastic Seam is the summaction of

the body force potential energy and the <lastic scrain energy. The
focmes is defined as the negative work done by grawity. te.
th = V liyg = Y‘/ -im,G - A, (35)

9:!. Jm\

where dmy = p; 4. ds. G = -Gay in which é3 i3 the vertical cooedi-
nate of the inertial frame (&, &2, #3), and iy is a positioa vector as
defined in the previous sections. Substicuting Eqs. 7.9.13.20. and 2§
igto Eq. 33 wiil result in & compact {ocm of the body force potennd
energy in macnix form as

N =

w=Vi+ilq

(36)
where V; is & potential functioa which repcesents the rigid body po-

teatial energy and fT is a force vector due to the slastic dedection.
These two terms can be further formalated as

L.
Vi 2mGbT T,o(Ri = - T a)




0
=2l T, T, SYT (4T 0.,
L, o | §T2l port
where m, is the mass of the beam, L, is the length of the beam, T,,
is a time-varving transformation matrix between the inertial frame
and the moving frame, a7 = {1 0 0}, and b7 = {0 0 1}. The elastic
stratn energy is defined as

At WV,
~ .. I ¢ -
Ca=Y Cng= 53 (@ kugOupala, (37)
=1 g=1

element in the
elastic beam. as shown in Eq. 14. Therefore, the total potential
energy can be found as

whete k,,, 18 & structural stiffness matrix of the ¢**
JtA
t

PE:'q.kHQI_"‘f (38>

or k9@ g¢. & symmetric constant matrnix.

where k,, = 3.2, O],

Motion Equations

By substituting the formulas of kinetic and potential energies in
Eqs. 32 and 38 into the Lagrange’s equation. Eq. 1. the equations
of motion of an arbitrary free elastic beam at the local level can be
written as

16(m.4.)..
m.q. —lm. - ST)q' -
o, v,
k- ==l =Q -f - ==
{ i ). = Q P (39)

The above equations cleatly show the nonlinearity involved in the
ume-varving coefficient matnces. Referring to Appendix . some of
the matnx partial differentiations can be derived immediately in the
follows:

. > w0 o
dii = —_"ZG a——‘:'ib]'r,/ [ $SYT ] ds
7 1 . 9 Tl
q; q s*Z; ]
N,
Yo (40)
g=1
i r L
AT AL 1IN D S (41)
oq; dq; 2

The partial differentiations on the right hand sides of the above
equations can de carried out analytically by substituting the spe-
cific transiormation matrix for T,o.

Derivation of ;a(m.é.)/aq;’

Referring to Eq. 32. the formula of kinetic energy of the :** beam is
rearranged in the {ollowing, as

KE. = 347miq = KE = KE. = 2K Ea (42)
where
KE.= -q. ra, Q. (43)
KE, = -Q.‘ OLNTIG, - H, - H,IN@.q.
KEs = ,q. TOILINT(Gu + His1O.ed:
Partial differentiating Eq. 42 with respect 10 q gives
19im.q,).

9KE. _1 dKE. OKE., ,3KEa
dq; 2 aql ITH sar " ear

(44)

where the first term vamishes because m,,

in Eq. 43 is a constant

matnix. Referring to Eq. 34. matrices H, |, H,;. and H,j are redefined

in the following forms, as

Bu By By
H, = Ff(q.)e Ba Bia: Ba | ®Tiq.)
Bu Bj By
= [Hiu.HaaHas)
D Di: Dy
Ha = Da D2 Das | 8Tiq)
Dy Dy Dy
= Hua,HoaoHas
q ET
H, = :H.).lH-l.!H-JJ;T= q.fE,T
Q7 ET
Thus. the second term in Eq. 44 can be written as
REs | ANOua) G, —H, « HaiNOLG -
TeaT aq;
1 [ aH, -H"")N@.xd.
2 aq;

dH,3:~H,a:)

= N@.,q.
da; e
3(H.u, - Hus) NG
__